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Mosaik is a flexible Smart Grid co-simulation framework.

Mosaik allows you to reuse and combine existing simulation models and simulators to create large-scale Smart Grid
scenarios — and by large-scale we mean thousands of simulated entities distributed over multiple simulator processes.
These scenarios can then serve as a test bed for various types of control strategies (e.g., multi-agent systems (MAS) or
centralized control).

Here, we provide the documentation about mosaik.

Contents:

CONTENTS 1
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CHAPTER
ONE

QUICKSTART

This guide assumes that you are somewhat proficient with Python and know what pip and virtualenv is. Else, you should
follow the detailed instructions.

Mosaik runs on Linux, OS X and Windows. It requires Python 3.8 or higher. To install everything, you need the package
manager Pip which is bundled with Python 3.8 and above.

We also strongly recommend you to install everything into a virtualenv.

You can then install mosaik with pip:

[$ pip install mosaik ]

This provides you with the mosaik framework. There is also a simple demo scenario which may help you to get started.
Please refer to our detailed instructions for installation.

For more information about avaiable components and example scenarios visit the mosaik ecosystem page.



http://python.org
http://pip.readthedocs.org/en/latest/installing.html
http://www.virtualenv.org/en/latest/
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CHAPTER
TWO

INSTALLATION

This guide contains detailed installation instructions for Linux, OS X and Windows.

It covers the installation of the mosaik framework followed by the instructions to install the demo.

2.1 Linux

This guide is based on (K)ubuntu 18.04 Bionic Beaver, 64bit.

Mosaik and the demo scenario require Python >= 3.8, which should be fine for any recent linux distribution. Note that
we test mosaik only for the most (typically three) recent python versions though.

1. We also need pip, a package manager for Python packages, and virtualenv, which can create isolated Python envi-
ronments for different projects:

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py
$ sudo pip install -U virtualenv

2. Now we need to create a virtual environment for mosaik and its dependencies. The common location for venvs is
under ~/ .virtualenvs/:

$ virtualenv -p /usr/bin/python3 ~/.virtualenvs/mosaik
$ source ~/.virtualenvs/mosaik/bin/activate

Your command line prompt should now start with “(mosaik)” and roughly look like this: (mo-
saik)user@kubuntu:~S.

3. The final step is to install mosaik:

[(mosaik)$ pip install mosaik ]

Mosaik should now be installed successfully.



https://www.python.org/
https://pip.readthedocs.org/
https://virtualenv.readthedocs.org/
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2.1.1 Running the demo

Mosaik alone is not very useful (because it needs other simulators to perform a simulation), so we also provide a small
demo scenario and some simple simulators as well as a mosaik binding for PYPOWER.

1. PYPOWER requires NumPy and SciPy. We also need to install the revision control tool giz. You can use the
packages shipped with Ubuntu. We use apt—get to install NumPy, SciPy, and h5py as well as git. By default,
venvs are isolated from globally installed packages. To make them visible, we also have to recreate the venv and
set the ——system—-site-packages flag:

sudo apt-get install git python3-numpy python3-scipy python3-h5py

rm -rf ~/.virtualenvs/mosaik

virtualenv -p /usr/bin/python3 --system-site-packages ~/.virtualenvs/mosaik
source ~/.virtualenvs/mosaik/bin/activate

v W

2. You can now clone the mosaik-demo repository into a folder where you store all your code and repositories (we’ll
use ~/Code/):

-

(mosaik)$ mkdir ~/Code
(mosaik)$ git clone https://gitlab.com/mosaik/mosaik-demo.git ~/Code/mosaik-demo

3. Now we only need to install all requirements (mosaik and the simulators) and can finally run the demo:

(mosaik)$ cd ~/Code/mosaik-demo/
(mosaik)$ pip install -r requirements.txt
(mosaik)$ python demo.py

If no errors occur, the last command will start the demo. The web visualisation shows the demo in your browser:
http://localhost:8000. You can click the nodes of the topology graph to show a time series of their values. You can
also drag them around to rearrange them.

You can cancel the simulation by pressing Ctr1-C.

22 0OSX

This guide is based on OS X 10.11 El Capitan.

1. Mosaik and the demo scenario require Python >= 3.8. OS X only ships with some outdated versions of Python, so
we need to install a recent Python 2 and 3 first. The recommended way of doing this is with the packet manager
homebrew. To install homebrew, we need to open a Terminal and execute the following command:

{$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—install)"

The homebrew installer asks you to install the command line developer tools for “xcode-select”. Install them. When
you are done, go back to the terminal and press Enter so that the installer continues.

If this doesn’t work for you, you’ll find more detailed instructions in the homebrew wiki.

Once the installation is successful, we can install python and python3:

[$ brew install python python3 ]

This will also install the Python package manager pip.

2. Next, we need virtualenv which can create isolated Python environments for different projects:

6 Chapter 2. Installation



https://github.com/rwl/PYPOWER
https://gitlab.com/mosaik/mosaik-demo
http://localhost:8000
https://www.python.org/
http://docs.python-guide.org/en/latest/starting/install/osx/
http://brew.sh/
https://github.com/Homebrew/homebrew/wiki/Installation
https://pip.readthedocs.org/
https://virtualenv.readthedocs.org/
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[$ pip install -U virtualenv ]

3. Now we need to create a virtual environment for mosaik and its dependencies. The common location for venvs is
under ~/ .virtualenvs/:

$ virtualenv -p /usr/local/bin/python3 ~/.virtualenvs/mosaik
$ source ~/.virtualenvs/mosaik/bin/activate

Your command line prompt should now start with “(mosaik)” and roughly look like this: (mosaik)user@mac—
book:~$.

4. The final step is to install mosaik:

[(mosaik)s pip install mosaik ]

Mosaik should now be installed successfully.

2.2.1 Running the demo

Mosaik alone is not very useful (because it needs other simulators to perform a simulation), so we also provide a small
demo scenario and some simple simulators as well as a mosaik binding for PYPOWER.

1. To clone the demo repository, we need to install git. In order to compile NumPy, SciPy and h5py (which are
required by PYPOWER and the database adapter) we also need to install gfortran which is included in gcc. You
should deactivate the venv for this:

(mosaik)$ deactivate
$ brew install git gcc hdf5
$ source ~/.virtualenvs/mosaik/bin/activate

2. For NumPy and SciPy we build binary wheel packages that we can later reuse without re-compiling everything.
We'll store these wheels in ~/wheelhouse/:

(mosaik)$ pip install wheel

(mosaik)$ pip wheel numpy

(mosaik)$ pip install wheelhouse/numpy-1.10.1-cp35-cp35m-macosx_10_6_intel.macosx_
—10_9_intel.macosx_10_9 x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
(mosaik)$ pip wheel scipy

(mosaik)$ pip install wheelhouse/scipy-0.16.0-cp35-cp35m-macosx_10_6_intel.macosx_
—10_9_ intel.macosx_10_9 x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
(mosaik)$ pip wheel h5py

(mosaik)$ pip install wheelhouse/h5py-2.5.0-cp35-cp35m-macosx_10_6_intel.macosx_
—10_9_intel.macosx_10_9 x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl

Note: The file names of the wheels (*.whl-files) may change when version-numbers change. Please check the output of
pip install or the directory ~/wheelhouse/ for the exact file names.

2. You can now clone the mosaik-demo repository into a folder where you store all your code and repositories (we’ll
use ~/Code/):

(mosaik)$ mkdir ~/Code
(mosaik)$ git clone https://gitlab.com/mosaik/mosaik-demo.git ~/Code/mosaik-demo

3. Now we only need to install all requirements (mosaik and the simulators) and can finally run the demo:

22. 0SX 7


https://github.com/rwl/PYPOWER
https://wheel.readthedocs.org/
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(mosaik)$ cd ~/Code/mosaik-demo/
(mosaik)$ pip install -r requirements.txt
(mosaik)$ python demo.py

If no errors occur, the last command will start the demo. The web visualisation shows the demo in your browser:
http://localhost:8000. You can click the nodes of the topology graph to show a time series of their values. You can
also drag them around to rearrange them.

You can cancel the simulation by pressing Ct r1-C.

2.3 Windows

This guide is based on Windows 10, 64bit.

1. Mosaik and the demo scenario require Python >= 3.8. By default, it will offer you a 32bit installer. You can find
the Windows x86-64 MSI installer here.

1. When the download finished, double-click the installer.
2. Select Install for all users and click Next >.

3. The default installation path is okay. Click Next >.

4

. In the Customize Python page, click on the Python node and select Entire feature will be installed on local hard
drive. Make sure that Add python.exe to Path is enabled. Click Next >.

5. When Windows asks you to allow the installation, allow the installation. Wait. Click Finish.
This also install the Python package manager pip.
2. We also need virtualenv which can create isolated Python environments for different projects.

Open a terminal window: Press the Windows key (or click on the start menu) and enter cmd. Press Enter. Your
terminal prompt should look like C : \Users\yourname>. Execute the following command to install virtualenv:

[C:\Users\yourname> pip install -U virtualenv ]

Note: If your Windows account type is Standard User, you need to open the terminal with administarator privileges
(right-click the Terminal icon, then open as Administrator). Make then sure that you are in your user directory:

C:\Windows\system32> cd C:\Users\yourname
C:\Users\yourname >

3. Now we need to create a virtual environment for mosaik and its dependencies. The common location for venvs is
under Envs/ in your users directory:

[C:\Users\yourname> virtualenv -p path\to\python.exe Envs\mosaik J

To activate the virtual environment use the following command:

[C:\Users\yourname> Envs\mosaik\Scripts\activate ]

This command should also function when using the powershell, however the execution policy might need to be
changed.

Your command line prompt should now start with “(mosaik)” and roughly look like this: (mosaik) C:\Users\
yourname>.

8 Chapter 2. Installation
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4. The final step is to install mosaik:

[(mosaik) C:\Users\yourname> pip install mosaik

Mosaik should now be installed successfully.

2.3.1 Running the demo
Mosaik alone is not very useful (because it needs other simulators to perform a simulation), so we also provide a small
demo scenario and some simple simulators as well as a mosaik binding for PYPOWER.

1. Download and install git.

Restart the command prompt (as Admin if necessary and make sure you are in the right directory again) and
activate the virtualenv again:

[C:\Users\yourname> Envs\mosaik\Scripts\activate

2. Clone the demo repository:

[(mosaik)C:\Users\yourname> git clone https://gitlab.com/mosaik/mosaik-demo.git ]

3. Now we only need to install all requirements (mosaik and the simulators) and can finally run the demo:

(mosaik)C:\Users\yourname> cd mosaik-demo
(mosaik) C:\Users\yourname\mosaik-demo> pip install -r requirements.txt
(mosaik) C:\Users\yourname\mosaik-demo> python demo.py

The web visualisation shows the demo in your browser: http://localhost:8000. You can click the nodes of the
topology graph to show a timeline of their values. You can also drag them around to rearrange them.

You can cancel the simulation by pressing Ct r1—C. More exceptions may be raised. No problem. :-)

2.3. Windows 9


https://github.com/rwl/PYPOWER
https://git-scm.com/downloads
http://localhost:8000
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CHAPTER
THREE

OVERVIEW

This section describes how mosaik works without going into too much detail. After reading this, you should have a general
understanding of what mosaik does and how to proceed in order to implement the mosaik API or to create a simulation
scenario.

3.1 What’s mosaik supposed to do?

Mosaik’s main goal is to use existing simulators in a common context in order to perform a coordinated simulation of a
given (Smart Grid) scenario.

That means that all simulators (or other tools and hardware-in-the-loop) involved in a simulation usually run in their own
process. Mosaik just tries to synchronize these processes and manages the exchange of data between them.

To allow this, mosaik
1. provides an API for simulators to communicate with mosaik,
2. implements handlers for different kinds of simulator processes,
3. allows the modelling of simulation scenarios involving the different simulators, and
4

. schedules the step-wise execution of the different simulators and manages the exchange of data (data-flows) between
them.

Although mosaik is written in Python 3, its simulator API completely language agnostic. It doesn’t matter if your simulator
is written in Python 2, Java, C, matlab or anything else.

3.1.1 A simple example

We have simulators for households (blue icon) and for photovoltaics (green). We're also gonna use a load flow analysis
tool (grey), and a monitoring and analysis tool (yellow).

11
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First, we have to implement the mosaik API for each of these “simulators”. When we are done with this, we can create a
scenario where we connect the households to nodes in the power grid. Some of the households will also get a PV module.
The monitoring / analysis tool will be connected to the power grid’s transformer node. When we connect all these entfities,
we also tell mosaik about the data-flows between them (e.g., active power feed-in from the PV modules to a grid node).

When we finally start the simulation, mosaik requests the simulators to perform simulation steps and exchanges data
between them according to the data-flows described in the scenario. For our simple example, that would roughly look
like this:

1. The household and PV simulator perform a simulation step for an interval [0, ¢/.
2. Mosaik gets the values for, e.g., P and Q (active and reactive power) for every household and every PV module.

3. Mosaik sets the values P and Q for every node of the power grid based on the data it collected in step 2. The load
flow simulator performs a simulation step for [0, ¢/ based on these inputs.

4. Mosaik collects data from the load flow simulator, sends it to the monitoring tool and lets it also perform a simulation
step for [0, t/.

5. Now the whole process is repeated for /7, #+i[ and so forth until the simulation ends.

In this example, all simulators had the same step size ¢, but this is not necessary. Every simulator can have its one step
size (which may even vary during the simulation). It is also possible that a simulator (e.g., a control strategy) can set input
values (e.g., a schedule) to another simulator (e.g., for “intelligent” consumers).

3.2 Mosaik’s main components

Mosaik consists of four main components that implement the different aspects of a co-simulation framework:
1. The mosaik Sim API defines the communication protocol between simulators and mosaik.

Mosaik uses plain network sockets and JSON encoded messages to communicate with the simulators. We call this
the low-level API. For some programming languages there also exists a high-level API that implements everything
networking related and offers an abstract base class. You then only have to write a subclass and implement a few
methods.

Read more ...

2. The Scenario API provides a simple API that allows you to create your simulation scenarios in pure Python (yes,
no graphical modelling!).

The scenario API allows you to start simulators and instantiate models from them. This will give you entity sets
(sets of entities). You can then connect the entities with each other in order to establish data-flows between the
simulators.

Mosaik allows you both, connecting one entity at a time as well as connecting whole entity sets with each other.
Read more ...

3. The Simulator Manager (or shorter, SimManager) is responsible for handling the simulator processes and com-
municating with them.

It is able to a) start new simulator processes, b) connect to already running process instances, and c¢) import a
simulator module and execute it in-process if it’s written in Python 3.

The in-process execution has some benefits: it reduces the amount of memory required (because less processes
need to be started) and it avoids the overhead of (de)serializing and sending messages over the network.

External processes, however, can be executed in parallel which is not possible with in-process simulators.

Read more ...

12 Chapter 3. Overview
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4. Mosaik’s Scheduler uses the event-discrete simulation approach for the coordinated simulation of a scenario.
Mosaik supports both time-discrete and event-discrete simulations as well as a combination of both paradigms.

Mosaik is able to handle simulators with different step sizes. A simulator may even vary its step size during the
simulation.

Mosaik tracks the dependencies between the simulators and only lets them perform a simulation step if necessary
(e.g., because its data is needed by another simulator). It is also able to let multiple simulators perform their
simulation step in parallel if they don’t depend on each other’s data.

Read more ...

3.2. Mosaik’s main components 13
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CHAPTER
FOUR

MOSAIK ECOSYSTEM

Mosaik as a co-simulation tool organizes the data exchange between simulators and coordinates the execution of the
connected simulaters. This part is called # mosaik-core and contains mosaik itself and APIs for multiple programming
languages.

mosaik
eco-system

Fig. 1: Mosaik is a co-simulation library. The components and tools form the mosaik ecosystem.

Mosaik-core without any connected simulators doesn’t do much. This is why we provide some simple and free simulators
so that it is possible to start with a working Smart-Grid simulation. These simulators belong to a part of mosaik’s ecosystem
called mosaik-components. More detailed documentation for some components can be found in the # component
documentation.

. . . . . .
To see how these components can be coupled to simulations, also some example scenarios are provided in &=
mosaik-examples.

Mosaik is developed following the “lean and mean” principle. That means that we try to keep the software as simple
as possible in order to keep it efficient and easy to maintain. In order to make it easier to set up and run experiments
with mosaik we provide some tools that help building scenarios, connecting simulators or to visualize and analyze the
simulation results. These tools are located in the % mosaik-tools.

For testing simulators or scenarios, mosaik provides some s basic simulators, which allow to specify specific data to be
sent.

. . . . . &
There are also some implementations done by external users of mosaik. We give an overview of the # external components
- .
and #= external scenarios we kKnow.

15
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. .
% mosaik-core

The root folder contains mosaik itself and the high-level API implementations are provided in the API folder.

e mosaik

API for Python

API for Java

generics for Java API

Java tutorial

API for Matlab

API for Matlab via Java
API for C#

. .
% mosaik-components

This lists the mosaik components that are available on pypi. There are always component in work that are not released
yet but are in working condition so if you don’t find what you are searching for here take a look in the repository.

* energy related components:

mosaik-pandapower is an adapter for the pandapower power system modeling, analysis and optimization tool.
Not maintained anymore, please install the mosaik-pandapower2 adapter.

mosaik-pandapipes is an adapter for the pandapipes fluid system modeling, analysis and optimization tool.

mosaik-pypower is an adapter for the PYPOWER load flow analysis library. Not maintained anymore, please
install the mosaik-pandapower2 adapter.

mosaik-heatpump contains different models for simulation of heatpump systems (detailled documentation can
be found /ere).

mosaik-pv is a simple PV Simulator based on PyPVSim.
mosaik-pvlib is a simple PV Simulator based on pvlib.
mosaik-pvgis is a simple PV Simulator based on PVGIS.

mosaik-householdsim is a househol simulator that simulate households by serving residual load profiles.

e data related components:

mosaik-web is a web visualization for mosaik simulations.

mosaik-csv is a simple demo simulators that you can use to integrate CSV data sets into simulation. It can
also write data into CSV data sets.

mosaik-hdf5 allows to write simulation results to a HDFS5 file for further analysis.

InfluxDB adapter to store simulation results into InfluxDB 1 time series database.

InfluxDB 2 adapter to store simulation results into InfluxDB 2 time series database.
mosaik-sql adapter to store simulation results into SQL database.

mosaik-timescaledb adapter to store simulation results into a postgres or timescale database.
ZeroMQ adapter to connect components with the messaging library ZeroMQ.

Odysseus-adapter to write results to the data stream management system Odysseus to mosaik.

e communication related components:

communication simulator is a basic communication suite using delays.

16
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— mosaik-104 contains an adapter to receive IEC 60870-5-104 protocol messages and hands it over to mosaik.
* FMI adapter allows to couple Functional Mockup Units (FMU), which are based on the FMI standard.
# component documentation

The components listed above and provided by the mosaik team, have usually a documentation directly in their repository.
For components which need a more detailled documentation to describe how they work, the documentation is integrated
here:

e mosaik-heatpump

4.1 mosaik-heatpump

4.1.1 Models

Heat pump

The heat pump model comprises four different calculation modes for simulating the performance of a heat pump - ‘de-
tailed’, ‘fast’, ‘hplib’, and ‘fixed’ modes. The first two are based on the TESPy library, the third is based on the hplib
library. In these three modes, a quasi-steady state modelling approach has been adopted, i.e., the conditions of the oper-
ation of the heat pump vary with each time-step and the steady state performance of the heat pump is calculated at these
different conditions for each time-step. The ‘fixed” mode is the most simplified, operating the heat pump with a fixed
performance irrespective of the different operating conditions.

The model based on hplib, hereafter referred as “hplib” model, is a parametric fit equation-based model, and thus takes
a statistical approach to predict the performance of the heat pump at different operating conditions. The model based on
TESPy, hereafter referred as “tespy” model, is more complex and considers the physical states of the fluids in the different
components of the heat pump. Therefore, it offers greater flexibility than the Aplib model in estimating the performance
of the heat pump at different operating conditions. However, as a result of this increased complexity, the simulation time
for the detailed calculations in fespy model is higher as compared to that of the simpler calculations in Aplib model.

hplib model

The hplib model is based on hplib (“Heat Pump LIBrary”), an open-source Python library that simulates the performance
heat pumps using parametric fit equations for the electric power and COP. The fit parameters are identified by applying a
least square regression model on the publicly available heat pump keymark data of the European Heat Pump Association
(EHPA). It is possible to simulate the performance of both air and water source heat pumps. The parameters are available
for a generic heat pump of both the types, as well as specific models available in the market.

The limits on the operation of the heat pump, the supply water and source air temperature ranges available from the
technical datasheets of the chosen heat pump model, have been added to the model directly available in the hplib library.

The equations 1 and 2 are the fit equations for the electric power and COP respectively. The reference values, Py ¢ is the
electrical power consumption at -7°C source temperature and 52°C supply water temperature. In both the equations, p;.4
are the fit parameters, Tj, is the source inlet temperature, Tqy is the supply water temperature, and Tpyp, is the ambient
temperature.

The evaporator and condenser inlet temperatures are the inputs to the model. The model checks if they are within the
operating range and ensures that the source air temperature is lower than the incoming water temperature. The model
then calculates the electric power, COP, the heating capacity, and the condenser mass flow as outputs. The electric power
and COP are estimated as shown in equations 1 and 2 respectively. The heating capacity is calculated from the electric
power and COP. The mass flow in the condenser is calculated assuming a temperature difference of 5°C.
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Pel = Pel,ref * (pl * Tin + P2 * Tout + Ps + Pg * Tamb)

Equation 1: Fit equation for electric power

coprP = P1 * Tin + po * Tout + ps + Py * Tamb

Equation 2: Fit equation for COP

How to use the hplib calculation mode

The user must specify the ‘calc_mode’ parameter as ‘hplib’, and the ‘heat_source’, either ‘air’ or ‘water’, must be specified.
For the ‘hp_model’ parameter, the user can choose from the different heat pump models available in the public heatpump
keymark database (the keywords can be obtained from the ‘hplib_database.csv’ file). If the ‘hp_model’ is set to ‘Generic’,
the user must additionally specify ‘cons_T", ‘heat_source_T’, and ‘P_th’.

The limits of operation for the heat pump are not available directly within the model in the hplib library. If a corre-
sponding equivalent heat pump model based on TESPy is available, the keyword for that model can be specified in the
‘equivalent_hp_model’. If not, the operation limits can be specified via ‘hp_limits’ parameter.

An example of the dictionary with the required parameters can be seen in the module documentation.

tespy model

The tespy model is based on TESPy (“Thermal Engineering Systems in Python”), an open-source Python library that
provides a powerful simulation package for thermal processes like power plants, district heating systems, heat pumps
etc. An initial version of this model has been used in a previous work, and significant changes have been made later
for a master’s thesis and for different research projects. The performance of the heat pump is simulated by considering
the energy and mass balances in the individual “components” of the heat pump — condenser, evaporator, compressor,
expansion valve, heat exchangers and pumps — and the state of fluids in the “connections” between these “components.” The
connections and components together form a topological netrwork that is represented and solved as a system of equations.
The schematic of the heat pump system used in this work is shown in the figure below.

compressor

)\
coolant cycle closer <7 ‘b}
4—

I

——( }— source ambient

) — _
@ condenser drum with
evaporator
consumer cycle closer — ey

expansion valve

Fig. 2: Schematic of the heat pump system network

The flexibility offered by the TESPy library in choosing the components of the network has been implemented through
the following features in the model:

18 Chapter 4. mosaik ecosystem


https://github.com/oemof/tespy
https://doi.org/10.1186/s42162-021-00180-6

mosaik Documentation, Release 3.3.0

Stages of compression

* The heat pump model is available in two system configurations, either with a one-stage compressor or a two-stage
compressor.

Additional components
¢ Intercooler between the two stages of compression
 Superheater between the evaporator and the compressor

TESPy has two modes of calculation, design and offdesign, to solve the network. The design mode is used to design the
system and forms the first calculation of the network. While designing the plant, TESPy offers much greater detail as
compared to hplib, in terms of the parametrization of the individual components, for example, the isentropic efficiency
of the compressor. The offdesign mode is used to calculate the performance of the system if parameters deviate from
the design point, for example, operation at partial loads or operation at different temperature/pressure levels. The system
calculations from the design mode form the basis for the offdesign mode. Both of these calculation modes have been
implemented in this model.

How to use the tespy based calculation modes

The user must specify the ‘calc_mode’ parameter as ‘detailed’ or ‘fast’. A detailed description of these two modes of
calculation can be found /Zere.

The ‘heat_source’, either ‘air’ or ‘water’, must be specified.

For the ‘hp_model’ parameter, the user can choose from the different heat pump models available, shown in the table
below.

4.1. mosaik-heatpump 19



mosaik Documentation, Release 3.3.0

Heat pump
model from
market

Key-
word for
‘calc_mode’

Configuration

Daikin Al-
therma
ERLQO0

6CV3

Daikin Al-
therma
ERLQO0

8CV3

Daikin Al-
therma
ERLQO1

6CV3

Viessmann Vi-
tocal 300-A

ait-deutschland
LW-300(L)

Viessmann Vi-
tocal 300-A

Viessmann Vi-
tocal 300-A

Air_6kW

Air_8kW

Air_16kW

Air_25kW

Air_25kW_1s

Air_30kW

Air_30kW_1s

Air_40kW

Air_40kW_1s

Air_60kW

Air_60kW_1s

Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 1.8 kW - 12.07 kW

Operating temperatures - Source air: -20°C to 25°C; Water supply:

Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 1.8 kW - 14.49 kW

Operating temperatures - Source air: -20°C to 25°C; Water supply:

Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 6.46 kW - 22.9 kW

Operating temperatures - Source air: -20°C to 35°C; Water supply:

Stages of compression - 2

Intercooler - No

Superheater - No

Heating capacity range - 10.76 kKW - 39.4 kW

Operating temperatures - Source air: -20°C to 35°C; Water supply:

Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 5.21 kW - 22.45 kW

Operating temperatures - Source air: -20°C to 35°C; Water supply:

Stages of compression - 2

Intercooler - No

Superheater - No

Heating capacity range - 15.8 kW - 54 kW

Operating temperatures - Source air: -20°C to 35°C; Water supply:

Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 7.3 kKW - 30.95 kW

Operating temperatures - Source air: -20°C to 35°C; Water supply:

Stages of compression - 2

Intercooler - No

Superheater - No

Heating capacity range - 16.73 kW - 53.41 kW

Operating temperatures - Source air: -20°C to 35°C; Water supply:

Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 9.75 kW - 30.35 kW

Operating temperatures - Source air: -20°C to 35°C; Water supply:

Stages of compression - 2

Intercooler - No

Superheater - No

Heating capacity range - 21.5 kW - 98.17 kW

15°C to 55°C

15°C to 55°C

15°C to 55°C

15°C to 55°C

15°C to 55°C

15°C to 60°C

15°C to 60°C

15°C to 55°C

15°C to 55°C

Operating temperatures - Source air: -20°C to 35°C; Water supply: 15°C to 65°C

Stages of compression - 1

20

Intercooler - No
Superheater - No
Heating capacity range - 11.98 kW - 50.58 kW
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Operating temperatures - Source air: -20°C to 35°C; Water supply: 15°C to 65°C
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Any other heat pump available in the market, with a different heating capacity and configuration, can be added to the
model, following the procedure shown in the example of the “Air_30kW” heat pump.

Note: With TESPy, it is possible to simulate the performance of water-water heat pumps as well. However, this has not
yet been integrated into this model and will be a part of a later release.

Example

An example scenario using the heat pump simulator in the mosaik environment is available in the ‘run_heatpump.py’ file.

The simulation is configured as shown below. The inputs to the heat pump model and the outputs from it are handled by
‘mosaik-csv’ .

SIM_CONFIG = {
'HeatPumpSim': {

'python': 'mosaik_components.heatpump.Heat_ Pump_mosaik:HeatPumpSimulator',
}I
'CSV': {

'python': 'mosaik_csv:CSV',

by
'CSV_writer': {
'python': 'mosaik_csv_writer:CSVWriter'

}’
# Create World
world = mosaik.World (SIM_CONFIG)

START = '01.01.2016 00:00"
END = 10 * 15 * 60 # 2.5 Hours or 150 mins

The tespy model is used in the fast’ calculation mode. The ‘Air_8kW’ heat pump is chosen. The required parameters are
set as shown below.

# Heat pump

params = {'calc_mode': 'fast',
'hp_model': 'Air_ 8kW',
'heat_source': 'air',

}
# configure the simulator
heatpumpsim = world.start ('HeatPumpSim', step_size=15%60)
# Instantiate model
heatpump = heatpumpsim.HeatPump (params=paramns)

The timeseries of heat demand, heat source temperature, and the condenser water inlet temperature, that are needed as
inputs for the model, are available in the ‘heatpump_ data.csv’ file.

# Input data csv

HEAT_LOAD_DATA = os.path.join(os.path.dirname (os.path.abspath( file )), 'data',
— 'heatpump_data.csv')

# configure the simulator

csv = world.start ('CSV', sim_start=START, datafile=HEAT_LOAD_DATA)

# Instantiate model

heat_load = csv.HP ()
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The output data is saved into ‘hp_trial.csv’ file.

# Output data storage
# configure the simulator
csv_sim_writer = world.start ('CSV_writer', start_date='01.01.2020 00:00', date_format=
' .%5m.%Y $H:%M',
output_file='hp_trial.csv')
# Instantiate model
csv_writer = csv_sim _writer.CSVWriter (buff_size=60 * 60)

The different entities are then connected and the simulation is executed.

# Connect entities

world.connect (heat_load, heatpump, 'Q_Demand', 'heat_source_T', ('heat_source_T', 'T
—amb'), 'cond_in_T')

world.connect (heatpump, csv_writer, 'Q_Demand', 'Q_Supplied', 'heat_source_T', 'P_
—Required', 'COP'")

# Run simulation
world.run (until=END)

Module Documentation

This module contains a simulation model of a Heat Pump based on the library TESPy.

class mosaik_components.heatpump.Heat_Pump_Model .Heat_Pump (params, COP_m_data)

Simulation model of a heat pump based on the libraries TESPy and hplib.

Heat pump parameters are provided at instantiation by the dictionary params. The following dictionary contains
the parameters that are mandatory:

{

'calc_mode': 'hplib',
'hp_model': 'Lw 300(L)"',
'heat_source': 'air',

Explanation of the entries in the dictionary:

¢ calc_mode: The calculation mode that is used by the heat pump model. Currently, detailed’, ‘fast’, hplib’,
and fixed’ calculation modes are available. The differences are explained in the documentation.

* hp_model: The specific model of the heat pump that must be simulated. The different models available
currently can be found in the documentation. This need not be specified for the fixed’ calculation mode.

* heat_source: The fluid that acts as the source of heat for the heat pump, either ‘water’ or ‘air’

If the ‘hplib’ calculation mode is chosen, the following parameter is required in addition to the mandatory ones:

{
'equivalent_hp_model': 'Air_ 30kW',

¢ equivalent_hp_model: The heat pump model from the saved data file whose limits of operation will be
applied

Alternatively, the limits can be directly specified in the following parameter:
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'hp_limits': { 'heat_source_T _min': -10, 'heat_source_T _max': 35, 'cons_T_min
—~': 25, 'cons_T_max': 55,
'heatload_min': 15000 }

For the ‘hplib’ calculation mode if the ‘Generic’ heat pump model is chosen, the following parameters are required
in addition to the mandatory ones:

{
'cons_T': 35,
'heat_source_T': 12,
'P_th': 35000,

* cons_T: The temperature at which heat is supplied to the consumer (in °C).
* heat_source_T: The temperature at which the fluid (water or air) is available as the heat source (in °C).

e P_th: The heating capacity of the heat pump (in W).

If the fixed’ calculation mode is chosen, the following parameters are required in addition to the mandatory ones:

{
'corls 3.5,
'heating capacity': 35000,
'cond_m': 0.5,

e COP: The COP of the heat pump.
* heating_capacity: The heating capacity of the heat pump (in W).

e cond_m: The mass flow rate of water in the condenser (in kg/s).

design
stores the design of the heat pump in a Heat _Pump_Model .Heat_Pump_Initiation object

state
stores the state variables of the heat pump in a Heat_Pump_Model.Heat_Pump_State object

inputs

stores the input parameters of the heat pump model in a Heat_Pump_Model.Heat_Pump_Inputs
object

step ()
Perform simulation step with step size step_size
class mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_Inputs (params)

Inputs variables to the heat pump for each time step

Q_Demand

The heat demand of the consumer in W

heat_source_T

The temperature of the heat source (in °C)
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T_amb
The ambient temperature (in °C)
cond_in_T
The temperature at which the water reenters the condenser (in °C)

step_size

step size in seconds

class mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State
Attributes that define the state of the Heat_Pump
P_Required
Power consumption of the heat pump in W
COP
COP of the heat pump

Q_Demand

The heat demand of the consumer in W
Q_Supplied

The heat supplied to the consumer in W

Q_evap

The heat removed in the evaporator in W
cons_T

The temperature at which heat is supplied to the consumer (in °C)
cond_in_T

The temperature at which the water reenters the condenser (in °C)
heat_source_T

The temperature of the heat source (in °C)
T_amb

The ambient temperature (in °C)
cond_m

The mass flow rate of water in the condenser of the heat pump (in kg/s)
cond_m_neg

The negative of the mass flow rate of water in the condenser of the heat pump (in kg/s)

step_executed

The execution of the step function of the heat pump model

Hot water tank

The hot water tank model developed for another project, is used in this work to act as a buffer in between the heating
device and the heat consumer. It is a multinode stratified thermal tank model, where the tank volume is divided into a
specified number of layers (nodes) of equal volume, each characterized by a specific temperature. A traditional density
distribution approach is adopted where the water flowing into the tank enters the layer that best matches its density (i.e.,
temperature). The model assumes that the fluid streams are fully mixed before leaving each of the layers and the flows
between the layers follow the law of mass conservation. Heat transfer to the surrounding environment from the walls of
the tank, and the heat transfer between the layers have been considered.
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Parametrization of the model

The schematic of the hot water tank model is shown in the figure below. The dimensions of the tank are specified in terms
of its height, and either the volume or diameter. The tank can be parametrized with sensors in the model to record its
temperature. The initial temperature of all the layers must be set at the beginning of the simulation.

The flows into and out of the tank are specified as the connections of the hot water tank model. The flow going to the
heat pump (HP_out), the space heating demand (SH_out), and the domestic hot water demand (DHW_out) are connected
to the bottom layer, the fourth layer and the top layer respectively in the example schematic shown below. As explained
earlier, the flows coming into the tank are not connected to a fixed layer in the tank. They are connected to the layer with
a temperature closest to that of the flow.

~_ | DHW_out
Layer 5
ththththth - htc_walls
HP_in Layer 4 T
. s el SH_out
) Layer3 . .-
_Sfl__l_n _______ > \‘“"--""'Thtc_layers
- Layer2 ° e
- L 1 -
DHW in “\-‘___?Yer HP_out
e ____ N
Layer O

Fig. 3: Schematic representation of the hot water tank model (example with 6 layers)

The heat transfer coefficient of the walls of the tank (htc_walls) is assumed to be 0.28 W/m?-K . The heat transfer
coefficient for the heat transfer between the layers of the tank is assumed to be 1.5 times the thermal conductivity of
water. The value is calculated as 0.897 W/m-K, considering the thermal conductivity of water to be 0.598 W/m-K.
However, these values can be changed by modifying the parameters dictionary of the hot water tank model.

Calculation of the model

The initial temperature profile inside the tank can be specified at the time of initialization of the model. For flows coming
into the tank, both the temperature and flow rate should be specified. For the flows going out of the tank, only the flow
rate should be specified, as the temperature is obtained from the corresponding layer of the tank. The model ensures that
the overall flow into and out of the tank is equal. The model then updates the temperatures of each layer based on the
water flows through the specified connections, the heat transfer between the layers and the heat transfer to the surrounding
environment. The model has the functionality to flip the layers to ensure a negative temperature gradient from the top to
the bottom of the tank. Finally, the model updates the connections with respect to the updated layer temperatures. For
the flows going out of the tank, the temperature is updated. For the flows coming into the tank, the corresponding layer
is updated.
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Example

An example scenario using the hot water tank simulator in the mosaik environment is available in the ‘run_tank.py’ file.

The simulation is configured as shown below. The inputs to the hot water tank model and the outputs from it are handled
by ‘mosaik-csv’.

SIM_CONFIG = {
'HotWaterTankSim': {
'python': 'mosaik_components.heatpump.hotwatertank.hotwatertank_
—mosaik:HotWaterTankSimulator',
}I
'CSV': {

'python':

Ho

'CSV_writer':
'python':

'mosaik_csv:CSV',

{

'mosaik_csv_writer:CSVWriter'

Ho

world = mosaik.World (SIM_CONFIG)
START = '01.01.2016 00:00"
END = 7 * 15 * 60

The hot water tank model has one inlet connection (‘cc_in’) and one outlet connection ( ‘cc_out’). The required parameters
and the initial values are set as shown below.

# Hot water tank

params = {
'height': 2100,
'diameter': 1200,
'T_env': 20.0,
'htc_walls': 0.28,
'htc_layers': 0.897,
'n_layers': 3,
'n_sensors': 3,
'connections': {

{'pos':

{'pos':

1500},
10},

e _dm" g
'cc_out':
}
}
init_vals = {
'layers': {'T': [30,

50, 701}

}
# configure the simulator
hwtsim = world.start ('HotWaterTankSim',
# Instantiate model
hwt = hwtsim.HotWaterTank (params=params,

step_size=15*60, config=params)

init_vals=init_vals)

The mass flow and temperature timeseries for these connections, that are needed as inputs for the model, are available in
the ‘tank_data.csv’ file.

# Input data csv
HWT_FLOW_DATA = os.path.join(os.path.dirname (os.path.abspath(
—'tank_data.csv')

# configure the simulator
world.start ('CSV',

file

csv = sim_start=START, datafile=HWT_FLOW_DATA)

(continues on next page)
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(continued from previous page)

# Instantiate model
csv_data = csv.HWT ()

The output data is saved into ‘hwt_trial.csv’ file.

# Output data storage
# configure the simulator
csv_sim_writer = world.start ('CSV_writer', start_date='01.01.2020 00:00', date_format=
o' .%5m.%Y $H:3M',
output_file="'hwt_trial.csv')
# Instantiate model
csv_writer = csv_sim _writer.CSVWriter (buff_size=60 * 60)

The different entities are then connected and the simulation is executed.

# Connect entities

world.connect (¢csv_data, hwt, ('T_in', 'cc_in.T'), ('F_in', 'cc_in.F'), ('F_out', 'cc_
—out.F'))

world.connect (hwt, csv_writer, 'cc_in.T', 'cc_in.F', 'cc_out.T', 'cc_out.F', 'sensor_
—~00.T', 'sensor_01.T', 'sensor_02.T')

# Run the simulation
world.run (until=END) # As fast as possilbe

Module Documentation

The hotwatertank module contains classes for the components of the hotwatertank (Layer, Connection, Sensor,
Heat ingRod) and a class for the hotwater tank itself (HotWaterTank).

class mosaik_components.heatpump.hotwatertank.hotwatertank.HotWaterTank (params,

init_vals=None)

Simulation model of a hotwater tank.

Stratification is modelled by a number of Layer objects. Heat producers and consumers can be connected to the
hotwatertank via Connection objects. The temperature at different positions in the tank can be accessed via
Sensor objects.

Hotwater tank parameters are provided at instantiation by the dictionary params. This is an example, how the
dictionary might look like:

-
params = {

'height': 2100,
'diameter': 1200,
'T_env': 20.0,
'htc_walls': 1.0,
'htc_layers': 20,

'n_layers': 3,

'n_sensors': 3,

'connections': {
'cc_in': {'pos': 0},

'cc_out': {'pos': 2099},
'gcb_in': {'pos': 1700},
'gcb_out': {'pos': 500}
b

'heating_rods': {

(continues on next page)
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'hr_1'": {
'pos': 1800,

'P_th_stages': [0, 500, 1000,

}

2000, 3000]

(continued from previous page)

Explanation of the entries in the dictionary:
* height: height of the tank in mm

¢ diameter: diameter of the tank in mm

* volume: alternatively to the diameter the volume of the tank in liter can be specified

e T_env: ambient temperature in °C

¢ htc: heat transfer coeflicient of tank walls in W/(m2K)

* htc_layers: imaginary heat transfer coefficient between layers in W/(m2K)

» n_layers: number of layers, n layers of the same dimension are created

e n_sensors: number of sensors, the sensors are equidistantly distributed in the hotwater tank, sensors are
named ‘sensor_00’, ‘sensor_01, ..., ‘sensor_n-1" with ‘sensor_00’ indexing the undermost sensor

* connections: each connection is specified by an dictionary with a structure analog to the example

« heating_rods: each heating rod is specified by an dictionary with a structure analog to the example

It is also possible to define layers and sensors explicitly:

params = {

'height': 2100,

'diameter': 1200,

'T_env': 20.0,

'htc_walls': 1.0,

'htc_layers': 20,

'layers': [
{'bottom': 0, 'top': 500},
{'bottom': 500, 'top': 1600},
{'bottom': 1600, 'top': 2100}
] 14

'sensors': {
'sensor_1', {'pos': 200},
'sensor_2', {'pos': 1900},

b
'connections': {
'cc_in': {'pos': 0},

'cc_out': {'pos': 2099},
'gcb_in': {'pos': 1700},
'gcb_out': {'pos': 500}

}V
'heating_rods': {
'hr_1': {
'pos': 1800,
'P_th_stages': [0, 500, 1000,
}
}

2000, 3000]

Chapter 4.
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Initial values for the temperature distribution in the tank or the initial el. power of the heating rod are provided by
the dictionary init_vals, which might look like this:

-

{
'layers': {'T': 50},
'hr_1': { 'P_el': 2000}

'layers': {'T': [30, 50, 70]}
'hr_1': { 'P_el': 2000}
}

L

or this:

-

{
'layers': {'T': [30, 70]},
'hr_1': { 'P_el': 2000}

¢ T: initial temperature of tank in °C, alternatively a temperature range can be specified, whereby the lower
limit defines the temperature of ther undermost layer and the upper limit the temperature of the uppermost
layer, inbetween a linear temperature gradient is set, it is also possible to specify the temperature of each
layer individually by passing a list of length n_layers

step (step_size, adapted_step_size_mode=False)
Perform simulation step with step size step_size

property snapshot

serialize to json

property snapshot_connections

serialize connections to json
property T_mean
Returns mean temperature of hotwatertank in °C

class mosaik_components.heatpump.hotwatertank.hotwatertank.Layer (params)

Layer of hotwater tank

Parameters
layer_params — dictionary containing the following keys

T - initial temperature of layer in °C

* bottom - bottom of layer relatively to hotwater tank bottom in mm
* top - top of layer relatively to hotwater tank bottom in mm

* diameter - diameter of layer in mm

* bottom_top - must be True for the bottom or top layer of the tank. This information is needed
to calculate the outer surface of the layer which in turn is needed to calculate heat losses to the
environment.
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class mosaik_components.heatpump.hotwatertank.hotwatertank.Sensor (params, layers)
Temperature sensor in the tank.
Parameters

params — dictionary containing params which specify a sensor, so far it contains only one entry
pos, which defines the position of the sensor above hotwater tank bottom

class mosaik_components.heatpump.hotwatertank.hotwatertank.Connection (params,
layers)

Devices are connected to the hotwater tank via connections.
Each connection is associated with a Zayer. For input connections (F>0) the corresponding layer is determined
by temperature comparison. The layer whose temperature is closest to the connection temperature is the corre-
sponding one. For output connections (F<0) the corresponding layer depends on the position of the connection.
The corresponding layer of a connection is not fix, but may change during the simulation, if the flow or temperatures
of the connection or the temperature of the layers changes.

class mosaik_components.heatpump.hotwatertank.hotwatertank.MassFlow (F, T)
Massflow

class mosaik_components.heatpump.hotwatertank.hotwatertank.HeatingRod (params,
layers,

init_vals=None)

Heating rod integrated into to the hotwater tank.

Heating rods are characterized by their position above tank level and their power stages. Efficiency is assumed to
be constantly 100%.

Controller

The controller model used in this work utilizes simple Boolean logic to:
1. Match the heating demands with the supply from the hot water tank/back up heaters
2. Control the operation of the heat pump and adjust the mass flows in the heat pump circuit
3. Control the in-built heating rod in the hot water tank

In order to perform each of the above functions, the controller must be initialized with a set of parameters. The controller
then analyzes the information received from the different models and sends the necessary information back to the models
for the progression of the simulation. The specific parameters and the information exchange for each of the functions are
detailed below.

Domestic hot water demand

The controller is initialized with a set point for the domestic hot water (DHW) supply temperature (7_hr_sp_dhw). For
each time step of the simulation, the controller receives the domestic hot water demand (dhw_demand), in liters of water,
the temperature of the water available for supply from the hot water tank (dhw_out_T'), and the temperature of the cold
inlet water (dhw_in_T). The controller then calculates the flow rate of water to be supplied from the tank by dividing the
demand with the time step (dhw_out_F). If the water from the tank is available for supply at a temperature greater than
the set point, flow is adjusted by mixing with the cold inlet water. If the temperature of water from tank is lower than
the set point, the controller calculates the heat to be supplied by the backup heater to achieve the set point temperature,
which is also the electric power required (P_hr_dhw) by the heater, assuming 100% efficiency. Finally, the controller sets
the information of the flows to the hot water tank (dhw_out F, dhw_in_F).
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Initialize with 7_hr_sp_dhw

Receive dhw_demand,
dhw_out_Tand dhw_in_T

Calculate dhw_in F

dhw_out T >
T hr_sp_dhw

Yes No

Adjust dhw_in_F

P hr dhw =10 Calculate P_hr_dhw

Send flows to HWT
dhw_out F=-dhw _in F

Fig. 4: Control flow for domestic hot water demand

Space heating demand

The controller is initialized with the set points for the space heating (SH) supply temperature (7_hr_sp_sh) and the
temperature difference in the space heating circuit (sh_dT). For each time step of the simulation, the controller receives
the space heating demand (sh_demand), in kW, the temperature of the water available for supply from the hot water
tank (sh_out_T). The controller then calculates the flow rate of water to be supplied from the tank from the demand and
the temperature difference (sh_in_F). If the water from the tank is available for supply at a temperature greater than
the set point, the return temperature (sh_in_T) is calculated as the difference between the supply temperature and the
temperature difference. If the temperature of water from tank is lower than the set point, the controller calculates the
heat to be supplied by the backup heater to achieve the set point temperature, which is also the electric power required
(P_hr_sh) by the heater, assuming 100% efficiency. The controller also calculates the return temperature as the difference
between the set point temperature and the temperature difference. Finally, the controller sets the information of the flows
to the hot water tank (sh_out_F, sh_in_F, sh_in_T).

Heat pump operation -control strategy 1

A simple hysteresis control based on the temperature of the bottom layer of the hot water tank has been implemented for
the operation of the heat pump. The controller is initialized with a higher (7_hp_sp_h) and lower (T_hp_sp_l) temperature
set point for the hot water tank. The controller then receives the temperature of the bottom layer (bottom_layer_T) of the
hot water tank. The bottom layer of the tank is controlled to be maintained in between the two temperature limits, i.e.,
the heat pump is turned on when the temperature in the bottom layer of the tank falls below the lower set point. The heat
pump is turned off only when the temperature in the bottom layer of the tank is greater than the higher set point. The
heat pump continues to remain turned off and turns back on only when the temperature of the bottom layer falls below
the lower set point again. The heat pump is controlled by setting its status (hp_status) to either ‘on’ or ‘off” based on the
control logic explained above. The heat demand from the heat pump (hp_demand) is calculated to be sent to the heat

pump.
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Initialize with 7_Ar_sp_sh and
sh_dT

-

Receive sh_demand and
sh_out T

Calculate sh_in F

sh_out T >

T hr_sp_sh
Yes No
sh_in_T=sh_out T—sh dT sh_in T=T hr_sp_sh—sh_dt
P _hr sh=0 Calculate P_hr_sh
Send flows to HWT
—

sh_out F=-sh in F

Fig. 5: Control flow for space heating demand

Initialize with T_hp_sp_h and
T hp sp 1,
hp_status = ‘off”

Receive bottom_layer T

bottom_layer T
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hp_status = = ‘on’
Yes No

bottom_layer T
>T hp sp_h

hp_status = ‘off”

No

hp_status = ‘off” hp_status = ‘on’

Fig. 6: Control strategy 1, for the operation of heat pump
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Heat pump operation -control strategy 2

In addition to the control strategy for the heat pump operation explained earlier, which is based only on the temperature of
the bottom layer of the hot water tank, a control strategy based on the temperatures of both the bottom and top layers of the
tank has been implemented. The controller is initialized with a higher (T_hp_sp_h) and lower (T_hp_sp_I) temperature
set point for the hot water tank, as done in the first control strategy. The controller then receives the temperatures of
the top layer (top_layer_T) and the bottom layer (bottom_layer_T) of the hot water tank. The top layer of the tank is
controlled against the higher set point, i.e., the heat pump is turned on when the temperature in the top layer of the tank
falls below the higher set point. The bottom layer of the tank is controlled against the lower set point, i.e., the heat pump
is turned off only when the temperature in the bottom layer of the tank is greater than the lower set point. In this case,
the temperature of the top layer is expected to be greater than the higher set point due to stratification inside the tank.
The heat pump continues to remain turned off and turns back on only when the temperature of the top layer falls below
the higher set point again. The heat pump is controlled by setting its status (hp_status) to either ‘on’ or ‘off” based on the
control logic explained above. The heat demand from the heat pump (hp_demand) is calculated to be sent to the heat

pump.

Initialize with T°_hp_sp_h and
T hp_sp_|,
hp_status = ‘off”

(PR

Receive top_layer_Tand
bottom_layer T

top_layer T <
T hp_sp_h

Yes

hp_status = ‘on’ hp_status unchanged

bottom_layer T
>T hp sp |

hp_status = ‘off” — ‘

No

hp_status = ‘off” hp_status = ‘on’ A

Fig. 7: Control strategy 2, for the operation of heat pump
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Module Documentation

The controller module contains a class for the controller model (Controller).

class mosaik_components.heatpump.controller.controller.Controller (params)

Simulation model of a controller.

The controller model used in this work utilizes simple Boolean logic to:
1. Match the heating demands with the supply from the hot water tank/back up heaters
2. Control the operation of the heat pump using different control strategies

Controller parameters are provided at instantiation by the dictionary params. This is an example, how the dictio-
nary might look like:

params = {
'T_hp_sp_h': 50,
'T_hp_sp_1': 40,
'T_hr_sp_hwt': 40,
'T_hr_sp_dhw': 40,
'T_hr_sp_sh': 35,
'dhw_in_T': 10,

Tgln_@lr’s 7,
'operation_mode': 'heating',
'control_strategy': '1'

}

Explanation of the entries in the dictionary:
e T_hp_sp_h: The higher temperature set point for heat pump operation (in °C)
o T_hp_sp_l: The lower temperature set point for heat pump operation (in °C)
e T_hr_sp_hwt: The temperature set point for the back up heater within the hot water tank (in °C)
e T_hr_sp_dhw: The temperature set point for the back up heater for domestic hot water supply (in °C)
e T_hr_sp_sh: The temperature set point for the back up heater for space heating supply (in °C)
e dhw_in_T: The default temperature of cold water inlet for domestic hot water (in °C)
* sh_dT: The temperature difference of the water in the space heating supply circuit (in °C)
» operation_mode: The operation mode of the heating system, either ‘heating’ or ‘cooling’

 control_strategy: The control strategy to be used for the heat pump operation. Currently, two strategies
have been implemented (‘1’ & 2)

step ()
Perform simulation step with step size step_size
calc_dhw_supply ()

Calculate the mass flows and temperatures of water, and the heat from the back up heater in the domestic hot
water (DHW) circuit

calc_sh_supply ()

Calculate the mass flows and temperatures of water, and the heat from the back up heater in the space heating
(SH) circuit

The package contains the models for the following components of the heating system:

1. Heat pump
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2. Hot water tank

3. Controller

4.1.2 Example scenarios

Example scenarios of the co-simulation of the heat pump, hot water tank and controller models are available in the
examples folder.

There are cyclic dependencies between the models for each time step, for ex., the hot water tank needing the information
from the controller regarding the demands and the water flows, and the controller needing information from the hot water
tank regarding the temperature of the water to calculate the flows. mosaik offers two different ways to resolve such cyclic
dependencies. The first is the time-shifted resolution, where the information from one model is passed to the other model
in the next time step. The second is the same-time-loop resolution, where the information exchange between the models is
done in the same time step before progressing the simulation to the next time step. The mosaik documentation describes
these two ways of dealing with cyclic dependencies in detail (cyclic-data-flows).

The user can choose between the two types of execution, by specifying the parameter same_time_loop’, while initializing
the simulators for each of the models. The default execution mode is the fime-shifted resolution. For the same-time-loop
resolution, the parameter ‘same_time_loop’ has to be set to True’. Depending on the type of execution, the way the
connections between the different models are setup varies, and can be seen in the example scenarios below.

Note: All the simulators must be set to the same type of execution

Time-shifted resolution

The first example scenario uses the time-based resolution of the cyclic dependencies offered by mosaik. The different
heat pumps, and calculation modes available in the heat pump model are simulated along with the hot water tank, with
the controller model matching both the space heating and domestic hot water demand with the heat available in the hot
water tank and controlling the operation of the heat pump.

The simulation is configured as shown below. The inputs/outputs to/from the models are handled by ‘mosaik-csv’.

sim_config = {
"CSV': {
'python': 'mosaik_csv:CSV',
}I
'CSV_writer': {
'python': 'mosaik_csv_writer:CSVWriter'
}I
'HeatPumpSim': {
'python': 'mosaik_components.heatpump.Heat Pump_mosaik:HeatPumpSimulator',
}I
'HotWaterTankSim': {
'python': 'mosaik_components.heatpump.hotwatertank.hotwatertank_
—mosaik:HotWaterTankSimulator',
by
'ControllerSim': {
'python': 'mosaik_components.heatpump.controller.controller_
—mosaik:ControllerSimulator’',

by

# The start date, duration, and step size for the simulation
(continues on next page)
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(continued from previous page)
END = 10 * 60
START = '01.01.2020 00:00"
STEP_SIZE = 60 * 1

The parameters and/or initial values for the different models are specified.

#Parameters for mosaik-heatpump

params_hp = {'hp_model': 'Air_ 30kW_1stage',
'heat_source': 'Air',
'cons_T': 35,

'Q_Demand': 19780,
'cond_in_T': 30,
'heat_source_T': 7,
}
#Parameters for hot water tank model
params_hwt = {
'height': 3600,
'volume': 4000,
'T_env': 20.0,
'htc_walls': 0.28,
'htc_layers': 0.897,

'n_layers': 6,
'n_sensors': o,
'connections': {

'sh_in': {'pos': 10},
'sh_out': {'pos': 2150},
'dhw_in': {'pos': 10},
'dhw_out': {'pos': 3400},
'hp_in': {'pos': 10},
'hp_out': {'pos': 500},

}I
}
init_vals_hwt = {
'layers': {'T': [40.0, 40.0, 40.0, 40.0, 40.0, 40.01}
}
#Parameters for controller model
params_ctrl = {

'T_hp_sp_h': 50,
'T_hp_sp_1': 40,
'T_hr_ sp_dhw': 40,
'T_hr_sp_sh': 35,
'dhw_in_T': 10,

'sh_dT': 7,
'operation_mode': 'heating',
'control_strategy': '1'

The different types of heat pumps and calculation modes that are simulated are specified.

# The different types of heat pumps and calculation modes that are simulated

model_list = ['Air_30kW_1stage', 'Air_30kW_1lstage', 'LW 300(L)', None]
calc_mode_list = ['detailed', 'fast', 'hplib', 'fixed']
filename_list = ['detailed', 'fast', 'hplib', 'fixed']

The mosaik ‘world’, and the simulators of the different models are initialized. The inputs required for the different models
— domestic hot water demand (DHW Demand); space heating demand (SH Demand); the heat source temperature, which
is the ambient air in this case (7_amb); and the temperature of the cold water replacing the domestic hot water supplied
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from the tank (dhw_in_T) — are available in the ‘scenario_data.csv’ file. The inputs and the outputs are handled by
‘mosaik-csv’ and the output data is saved in csv files.

# Initialize the world and the simulators.

world = mosaik.World(sim_config)

heatpumpsim = world.start ('HeatPumpSim', step_size=STEP_SIZE)

hwtsim = world.start ('HotWaterTankSim', step_size=STEP_SIZE, config=params_hwt)

ctrlsim = world.start ('ControllerSim', step_size=STEP_SIZE)

heat_load_file = os.path.join(os.path.dirname (os.path.abspath( file )), 'data',
—'scenario_data.csv')

heat_load_sim = world.start ('CSV', sim_start=START, datafile=heat_load_file)

CSV_File = 'Scenario_ ' + filename_list[1i] + '_time_ _shifted.csv'

csv_sim_writer = world.start ('CSV_writer', start_date='01.01.2020 00:00', date_

—format="%d.%m.%Y SH:SM',
output_file=CSV_File)

The specific parameters for the different heat pump models and calculation modes are added to the parameters.

params_hp['calc_mode'] = calc_mode_list[i]
params_hp['hp_model'] = model_list[i]

if 'hplib' in params_hp['calc_mode']:
params_hp['equivalent_hp_model'] = 'Air_ 30kW_1lstage'
elif 'fixed' in params_hp['calc_mode']:
params_hp['COP'] = 3.5
params_hp['heating capacity'] = 15000
params_hp['cond_m'] = 0.5

The different models are instantiated.

# Instantiate the models
heatpumps = heatpumpsim.HeatPump.create (1, params=params_hp)

hwts = hwtsim.HotWaterTank.create(l, params=params_hwt, init_vals=init_vals_hwt)
ctrls = ctrlsim.Controller.create(l, params=params_ctrl)
heat_load = heat_load_sim.HEATLOAD.create (1)

csv_writer = csv_sim writer.CSVWriter (buff_size=60 * 60)

The cyclic data flows between the different models are then set up in the time-shifted manner and the simulation is
executed.

# connections between the different models
world.connect (heat_load[0], ctrls[0], 'T_amb', ('T_amb', 'heat_source_T'), ('SH.
—~Demand [kW]', 'sh_demand'),
('DHW Demand [L]', 'dhw_demand'), 'dhw_in_T"')

world.connect (hwts[0], ctrls[0], ('T_mean', 'T_mean_hwt'), ('mass', 'hwt_mass'),
('sensor_00.T', 'bottom_ layer_T'), ('sensor_04.T', 'top_layer_T'),
('dhw_out.T', 'dhw_out_T'"'), ('sh_out.T', 'sh_out_T'"'), ('hp_out.T',

(continues on next page)
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(continued from previous page)
—'hp_out_T"'))

world.connect (ctrls[0], hwts[0], ('sh_in_ F', 'sh_in.F'), ('sh_in_T', 'sh_in.T'"), (
—'sh_out_F', 'sh_out.r'),
('"dhw_in_F', 'dhw_in.F'), ('dhw_in_T', 'dhw_in.T'), ('dhw_out_F',
—'dhw_out.F'"), ('T_amb', 'T_env'),
time_shifted=True,
initial_data={'sh_in_F': 0, 'sh_in_T': 0, 'sh_out_F': 0,
'dhw_in_F': 0, 'dhw_in_T': 0, 'dhw_out_F': O,
'T_amb': O,
}I

world.connect (heatpumps[0], ctrls[0], ('Q_Supplied', 'hp_supply'), ('on_fraction',
— 'hp_on_fraction'),
('cond_m', 'hp_cond m'))

world.connect (ctrls[0], heatpumps[0], ('hp_demand', 'Q_Demand'),
'T_amb', 'heat_source_T', time_shifted=True,

initial_ data={'hp_demand': 0, 'T_amb': 5, 'heat_source_T': 5})

world.connect (hwts[0], heatpumps[0], ('hp_out.T', 'cond_in_T'))

world.connect (heatpumps([0], hwts[0], ('cons_T', 'hp_in.T'), ('cond_m', 'hp_in.F'"),
— ('cond_m_neg', 'hp_out.F'),
time_shifted=True, initial_data={'cons_T': 0, 'cond_m': 0, 'cond_m_
—neg': 0})

world.connect (heat_load[0], csv_writer, 'T_amb', 'SH Demand [kW]', 'DHW Demand [L]
")
world.connect (heatpumps[0], csv_writer, 'Q _Demand', 'Q_Supplied', 'T_amb', 'heat_
—source_T', 'cons_T', 'P_Required',
'COP', 'cond_m', 'cond_in_T', 'on_fraction')

world.connect (ctrls[0], csv_writer, 'heat_demand', 'heat_supply', 'hp_demand',
—'sh_supply', 'sh_demand', 'hp_supply',
'sh_in_F', 'sh_in_T', 'sh_out_F', 'sh_out_T', 'dhw_in_F', 'dhw_in_T
—', 'dhw_out_F', 'dhw_out_T',
'hp_in_F', 'hp_in_T', 'hp_out_F', 'hp_out_T', 'P_hr sh', 'P_hr_ dhw',
— 'dhw_demand', 'dhw_supply"')
world.connect (hwts[0], csv_writer, 'sensor_00.T', 'sensor_01.T', 'sensor_02.T',
—~'sensor_03.T', 'sensor_04.T',
'sensor_05.T7T', 'sh_out.T', 'sh_out.F', 'dhw_out.T', 'dhw_out.F',
—'hp_in.T', 'hp_in.F', 'hp_out.T', 'hp_out.F',
'T_mean', 'sh_in.T', 'sh_in.F', 'dhw_in.T', 'dhw_in.F'")

#Run
world.run (until=END)
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Same-time-loop resolution

The second example scenario uses the event-based resolution of the same-time-loop cycles offered by mosaik. Only the
things that need to be changed when compared to the time-based resolution are shown below.

While initializing the model simulators, the same_time_loop’ parameter has to be set to ‘True’ for all the models.

heatpumpsim = world.start ('HeatPumpSim', step_size=STEP_SIZE, same_time_loop=True)

hwtsim = world.start ('HotWaterTankSim', step_size=STEP_SIZE, config=params_hwt, .
—same_time_loop=True)

ctrlsim = world.start ('ControllerSim', step_size=STEP_SIZE, same_time_loop=True)

The cyclic data flows between the different models are then set up in the same-time-loop manner.

# connections between the different models
world.connect (heat_load[0], ctrls[0], 'T_amb', ('T_amb', 'heat_source_T'), ('SH.
—Demand [kW]', 'sh_demand'),
('"DHW Demand [L]', 'dhw_demand'), 'dhw_in_T"'")

world.connect (hwts[0], ctrls[0], ('T_mean', 'T_mean_hwt'), ('mass', 'hwt_mass'),
('sensor_00.T', 'bottom_ layer_T'), ('sensor_04.T', 'top_layer_T'),
('dhw_out.T', 'dhw_out_T'), ('sh_out.T', 'sh_out_T'),
('"hp_out.T', 'hp_out_T'))

world.connect (ctrls[0], hwts[0], ('sh_in_F', 'sh_in.F'), ('sh_in_T', 'sh_in.T'"'), (
—'sh_out_F', 'sh_out.r'),
('dhw_in_F', 'dhw_in.F'), ('dhw_in_T', 'dhw_in.T'), ('dhw_out_F',
—'dhw_out.F'), ('T_amb_hwt', 'T_env'),
('"hp_in_T', 'hp_in.T'), ('hp_in_F', 'hp_in.F'), ('hp_out_F', 'hp_
—out.F'), weak=True)

world.connect (heatpumps[0], ctrls[0], ('Q_Supplied', 'hp_supply'), ('on_fraction',
— 'hp_on_fraction'),
('cond_ m', 'hp_in F'), ('cond_m_neg', 'hp_out_F'), ('cons_T', 'hp_
—~in_T'"'), weak=True)

world.connect (ctrls[0], heatpumps[0], ('hp_demand', 'Q_Demand'), ('hp_out_T',
—~'cond_in_T"'"),
'T_amb', 'heat_source_T')

world.connect (heat_load[0], csv_writer, 'T_amb', 'SH Demand [kW]', 'DHW Demand [L]
")
world.connect (heatpumps[0], csv_writer, 'Q_Demand', 'Q_Supplied', 'T_amb', 'heat_
—source_T', 'cons_T', 'P_Required',
'COP', 'cond_m', 'cond_in_T', 'on_fraction')

world.connect (ctrls[0], csv_writer, 'heat_demand', 'heat_supply', 'hp_demand',
—'sh_supply', 'sh_demand', 'hp_supply',
'sh_in_F', 'sh_in_T', 'sh_out_F', 'sh_out_T',6 'dhw_in_F', 'dhw_in_T',
— 'dhw_out_F', 'dhw_out_T',
'hp_in_F', 'hp_in_T', 'hp_out_F', 'hp_out_T', 'P_hr_sh', 'P_hr_dhw
—"', 'dhw_demand', 'dhw_supply')
world.connect (hwts[0], csv_writer, 'sensor_00.T', 'sensor_01.T', 'sensor_02.T',
—'sensor_03.T', 'sensor_04.T', 'sensor_05.T',
'sh_out.T', 'sh_out.F', 'dhw_out.T', 'dhw_out.F', 'hp_in.T', 'hp_in.
(continues on next page)
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(continued from previous page)

—F', 'hp_out.T', 'hp_out.F',
'T_mean', 'sh_in.T', 'sh_in.F', 'dhw_in.T', 'dhw_in.F")

For the same-time-loop execution, it is important to set the initial event that kick-starts the simulation, which is the
simulation of the hot water tank for this scenario. The simulation is then executed.

# To start hwts as first simulator
world.set_initial_event (hwts[0].sid)

#Run
world.run (until=END)

4.1.3 Integrating new heat pumps

Initial Parametrization

The tutorial provided in TESPy’s documentation for simulating heat pumps has been followed to develop the first design
calculation, available in the ‘Parametrization_NominalData.py’ file. While the tutorial provides a detailed explanation of
the complete parametrization of the model, only the most relevant parameters are discussed here.

The data obtained from the manufacturer’s datasheet corresponding to the nominal operating point is shown in table below.

Table 1: Nominal operating point data

Parameter Value Units
Condenser inlet temperature 30 °C
Condenser outlet temperature 35 °C
Source air temperature 7 °C
Temperature difference for air in evaporator 5 °C
Heating capacity 32.5 kW
Electrical Power 8.56 kW
Refrigerant R448A -

This data has been used to set the parameters of the corresponding components and connections as described in the
tutorial. Since the refrigerant R448A is not available in TESPy, R404A has been used due to the similarity in their
properties (reference).

TESPy uses the isentropic efficiency of the compressor to calculate the power consumption as shown in equation below.

min . (hout,s - hin)
UE

P- power consumption of the compressor; 1hj,- mass flow in the compressor,
(heuts — hin)- enthalpy change in an isentropic compression process, 1)s- isentropic efficiency of the compressor.

P =

Since the isentropic efficiency of the compressor (‘eta_s’) is not available in the datasheet, the value has been changed on
a trial-and-error basis to match the power consumption calculated by the model to that mentioned in the datasheet.

Note: For heat pumps having two stages of compression, like the one in this example, in addition to the isentropic
efficiency, the pressure ratio (pr’) for the second stage is also a required parameter.
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This has to be adjusted on a trial and error basis as well, so that it works for the different range of operating conditions of
the heat pump. This could be checked, by choosing data points from the edges of the operation range, and following the
same procedure as done for nominal operating point data.

Compressor efficiency map

The design case from the previous step can be used as the basis for offdesign calculations to predict the system’s per-
formance (in terms of Electrical power/COP) at different operating conditions, i.e., a different source or consumer inlet
temperature. While the tutorial in TESPy’s documentation provides a detailed explanation of all the changes between the
two modes of calculations, only the most relevant changes are discussed here.

The refrigerant and the temperature difference for air in the evaporator remain unchanged. The source air temperature
and the condenser inlet temperature are available as inputs to the model. The maximum heating capacity at a particular
source air temperature is available from the datasheet. The condenser outlet temperature is not known in the off-design
case, but must be predicted. In the design mode, the heating capacity and temperature difference between condenser
inlet and outlet are used to calculate the mass flow in the circuit. This mass flow is used to calculate the condenser outlet
temperature in the off-design mode.

In order to determine the electrical power consumption, the isentropic efficiency of the compressor is required. Since this
is not available in the datasheets for the entire range of operation, the default characteristic curve available in the TESPy
library, shown in figure below, is used.

Characteristic line "DEFAULT" for parameter "eta_s_char".
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Fig. 8: Default characteristic curve for the isentropic efficiency of the compressor in TESPy library

The x-axis is the ratio of the mass flow into the compressor in the design and off-design cases, and the y-axis is the ratio
of the isentropic efficiencies in the design and off-design conditions.

The default characteristic curve is generic and therefore does not accurately reflect the performance of the specific model
of the heat pump chosen. Instead of relying on the isentropic efficiency from a single design point and the default char-
acteristic curve across the entire range of operation, a series of design points have been developed based on the data
available in the manufacturer’s datasheet for the operating conditions shown in table 3.3.

Table 2: Design point conditions

Source air temperatures (°C) -20, -15, -12, -10, -7, -2, 2,7, 10, 12, 15, 20, 25, 30, 35
Condenser outlet temperatures (°C) 15, 20, 25, 30, 35, 40, 45, 50, 55

The operating range of the heat pump for the source air temperature is -20°C to 35°C. The actual operation range of the
heat pump on the condenser outlet temperature is 25°C to 60°C. In the model, the range is further increased to 15°C to
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60°C, in order to simulate low temperature lift conditions. The temperature difference in the condenser, constant at 5°C
in the design case, has been used to calculate the condenser inlet temperature.

Extension of the heating capacity table of the heat pump

The manufacturer’s datasheets contain the heating power curves and the electrical power curves as shown in figure below.
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Fig. 9: Heating capacity, electrical power, and COP curves of the chosen heat pump

In all the plots, the x-axis corresponds to the source (air) temperature. The data is available for the entire range of source
air temperature, but only for two condenser outlet temperatures, 35°C and 55°C.

The heating capacity increases with an increase in the source air temperature, but does not change significantly with a
change in the condenser outlet temperature. At a given source air temperature, the heating capacity for all the other
condenser outlet temperatures is assumed to be the average of the heating capacities at 35°C and 55°C.

The power consumption changes with both the source air temperature and the condenser outlet temperature. An approach
based on Carnot efficiency has been used to predict the power consumption at the condenser outlet temperatures other
than 35°C and 55°C. The ideal COP is calculated for all the operating points, using the equation below (note that the
temperatures have to be in Kelvin scale).

Th

COPigeqi = T —T,

where Th is the condenser water outlet temperature, Tc is the source air temperature, and COPigeal is the ideal
coefficient of performance of the heat pump

Fig. 10: Equation for ideal COP

For the operating points where the power consumption/COP is known, the Carnot efficiency has been calculated using
the following equation.
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— COPreal
ncarnot COP.

ideal

where COP:cal is the real coefficient of performance of the heat pump, and nearmot is the Carnot efficiency of the
heat pump

Fig. 11: Equation for Carnot efficiency

The temperature lift for all the operating points is calculated using equation below
Ty ft = Ty — T
where Tif is the temperature lift

Fig. 12: Equation for temperature lift

A second order polynomial equation has been fit to the pairs of the Carnot efficiencies and the corresponding temperature
lifts, of operating points with condenser outlet temperatures 35°C and 55°C, as shown in figure below.

Carnot Efficiency/COP vs. Temperature lift
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Fig. 13: Carnot efficiency/COP vs Temperature Lift plot for the chosen heat pump

In this figure, the COP of the heat pump is also plotted against the temperature lift. The Carnot efficiencies of the
remaining operating points are estimated using the fit equation, which in turn are used to estimate the real COP/power
consumption.

For the series of design points identified, the calculated heating capacity and power consumption data is summarized in
the table below.

The heating capacity data has to be saved in the ‘Heat_Load_Data.csv’ file and the power consumption data has to be
saved in the ‘PI Data.csv’ file.
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Heating Capacity (kW} / Power Consumgption (kW)

Source air Condenser outlet temperature (deg. C}
{deg. ©) 15 20 25 30 35 40 45 50 55 60
20 1587527 | 158/572 | 1587626 | 1587692 | 158/86 158/89 | 158/10.45 - - -
-15 19578 19623 19 /6.76 1974 19 f 8.65 1992 19 /1053 - - -
-12 21 /6.06 21 /651 21/7.00 21 /766 21/87 21 /937 21/106 - - -
-10 237621 223 /667 23/7.19 23f78 n3/8.7s 223/946 | 23/1063 | 223/12.17 - -
-7 2428642 | 2428 /6.88 2428 f7.4 38f8 2428 f8.75 | 2428 f9.58 | 2428 f10.67 | 2428 f 12.07 | 2428129 -
2 2717655 271/7.04 27.1/7.55 2717813 2727875 2717957 | 27.1/1053 | 27.1/11.72 27/128 27171534

29.39/6.57 | 29.39/7.11 | 29.39/7.64 | 29.39/82 2967/8.7 | 29.39 /956 | 29.39/10.44| 29.39/11.51( 29.1/128 | 29.39/146
33.25/6.55 | 33.25/7.31 | 33.25/7.91 | 33.25/85 3257855 | 33.25/9.83 | 33.25/10.65(| 33.25/11.63| 34/12.8 (332571432

10 847 /6,66 | 3847 /7.80 | 31847 /865 | 38.47/9.33 | 39.43/9.35 | 318.47 /1077 | 38.47 f11.62 | 3847 /12,63 | 375/134 |3847/1534
12 405/591 | 405/784 | 405/875 | 4057948 | 405904 | 405/1094 | 05/11.79 | 405/12.77 | 4057125 | 405/15.38
15 - a24f721 | 424f855 | 4247938 | 424f94 |424f1086 | a24/1168 | 42471261 | a24/135 | 42471502
20 - - 451/754 | a51/804 | 451/94 |451/1050 | 45171137 | 45171223 | 4517135 | 45.1/14.36
25 - - - a8 f79 48/9.4 48f1028 | 48f11.09 | 48/11.92 48 /136 48 /13.85
0 - - - - 51/9.4 51/9.79 51/10.75 517116 51/13.7 51/13.42
as - - - - - 54 /86 54/10.2 541121 | 54/13.75 54/13

Fig. 14: Expanded heating capacity table of the heat pump

Generating the compressor efficiency map

The tutorial available in the ‘script_etas_gen.ipynb’ is followed to generate the compressor efficiency map. The model
is parametrized for each of the design point in the expanded heating capacity table from the previous step, as done for
the initial parametrization of the model for the nominal operating point. As the power consumption of the compressor
is dependent on the isentropic efficiency, which is set as a parameter in the compressor, it is changed for each point in
order to match the power consumption calculated by the model and that in the table. The isentropic efficiency values are
restricted to the range of 0.3 - 0.95.

Note: In the instances when the power values cannot be matched even at the extreme values for the compressor isentropic
efficiency, the extreme values are assumed despite the difference in power predicted by the model and that in the table.

The compressor isentropic efficiency map generated as described is summarized in table below.

‘fast’ mode data

‘detailed’ calculation mode of the model for the simulations

After establishing the series of design points, the model is then developed to estimate the performance of the heat pump
at any operating point within its range. The heat pump is used as the primary heating source for the hot water tank. The
temperature of the water flow to the heat pump from the hot water tank, and the source air temperature are the required
inputs.

The model checks if the conditions are within the operation range of the heat pump and ensures that the source air
temperature is lower than the incoming water temperature. The source air temperature closest to the input value is then
identified from the expanded heating capacity table. The model checks that the inlet water temperature is lower than the
maximum possible condenser outlet temperature at the identified design source air temperature. Assuming a temperature
difference of 5°C in the condenser in the design case, an initial condenser outlet temperature is estimated. The closest
design point to the estimated condenser outlet temperature is then identified from the extended heating capacity table. In
case this estimated condenser temperature is greater than the maximum possible outlet temperature, the maximum value
is used as the design point. The heating capacity and the isentropic efficiency of the compressor corresponding to the
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Compressor sentropic Efficiency
Source air Condenser outlet temperature {deg. C}
Temperatune
{deg. ©) 15 20 a5 30 as 40 a5 50 55 60
-20 0.55 0.56 0.56 0.55 0.42 0.45 0.35 - - -
-15 0.5 0.56 058 058 0.52 0.5 0.48 - - -
-12 0.5 0.56 058 0.59 0.56 0.57 0.5 - - -
-10 053 0.56 058 0.60 058 0.59 0.57 0.52 - -
-7 051 0.5 058 0.60 0.61 0.62 0.61 058 0.61 -
-2 0.47 0.52 0.56 0.59 0.63 0.64 0.65 0.65 0.67 0.59
2 0.44 0.49 053 058 0.63 0.65 0.67 0.69 0.69 0.69
7 041 0.45 0.50 0.55 0.63 0.64 0.68 0.71 0.77 0.78
10 0.40 043 0.48 053 0.65 0.63 0.67 0.72 0.77 0.81
12 043 041 0.46 051 0.62 0.62 0.67 0.72 0.80 0.83
15 - 041 0.44 0.49 0.59 0.60 0.65 0.71 0.79 0.85
20 - - 0.42 0.45 053 0.56 0.62 0.69 0.7 0.86
25 - - - 0.42 0.45 0.52 058 0.66 0.68 0.84
30 - - - - 037 0.47 0.5 0.61 0.62 0.81
35 - - - - - 0.45 0.49 0.56 0.56 0.77

Fig. 15: Compressor isentropic efficiency map

design point source air and condenser outlet water temperatures are identified from the respective tables, the expanded
heating capacity table and compressor efficiency table.

The model first performs a network calculation in the design mode at the identified design point operating conditions.
An offdesign mode calculation of the network is then performed for the actual input operating conditions, based on the
design mode calculation and the default characteristics of TESPy, to obtain the condenser outlet water temperature (supply
temperature), the mass flow of water in the condenser and the power consumption of the heat pump.

Inputs Design Point Data
Source air Condenser water Source air Condenser water Heat load Compressor
temperature inlet temperature temperature outlet temperature isentropic efficiency
3 32 2 35 29.67 0.65
18 48 20 55 45.1 0.91

Fig. 16: Example of detailed calculation mode

‘fast’ calculation mode of the model

In addition to the detailed mode of calculation explained above, a fast calculation mode has also been implemented in
the model to improve its computational speed. The model is discreetly parametrized over the entire operation range
of the heat pump, at a resolution of 1°C for both the inputs, the source air temperature, and the condenser water inlet
temperature. The detailed calculation mode can be implemented over this range of inputs and the output data from the
model- the coefficient of performance (COP) of the heat pump and the condenser mass flow rate- can be saved. During
the actual simulation, the saved inputs that are lower/closest to the actual input data are identified, and the saved output
data for these points are used to calculate the outputs of the model, rather than performing the actual design and offdesign
calculations. Though the granularity of the model is reduced, there is a significant improvement in the simulation duration.
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A
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using the retrieved COP & heating
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Fig. 17: Flowchart explaining the fast calculation mode of the TESPy heat pump model

Generation of ‘fast’ mode data

The data for the fast’ calculation mode can be calculated and saved as follows:
1. Adding the new heat pump model

The initial parametrization of the new heat pump model, based on the nominal operating point, from the
‘Parametrization_NominalData.py’ file, should be added to the ‘ design_hp’ method of the heat_pump_design.py
file (line 217).

2. ‘fast’ calculation mode data generation
The tutorial in the ‘Fast_Calculation_Mode.ipynb’, should be followed to generate the fast mode data.
3. ‘fast’ calculation mode data processing

The tutorial in the ‘Fast_Mode_DataProcessing.ipynb’ script should be used to process the fast mode data, to fill
the missing values in the data that result from the errors in the model etc.

Module Documentation

class mosaik_components.heatpump.Heat_Pump_Design.Heat_Pump_Design (params,
COP_m_data=None)

Design of the heat pump model for the different calculation modes

_take_closest (myList, myNumber)

Assumes myList is sorted. Returns closest value to myNumber. If two numbers are equally close, return the
smallest number.

_etas_heatload_id()

¢ Used for all the calculation modes except ‘fixed’ mode.

* Uses the pre-saved data from the “eta_s_data.json” file

Checks the inputs, cond_in_T and heat_source_T, against the limits of operation for the chosen heat
pump model.

* Identifies the closest design point for the inputs, for the ‘detailed’ calculation mode
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_design_hp ()
¢ Used in the ‘detailed’ calculation mode to solve the TESPy network of the heat pump in the design mode
¢ Number of stages of compression can be 1 (default) or 2
* Intercooler between the two stages of compression is optional
 Superheater between the evaporator and the compressor is optional
* fixed and variable mass flow in the evaporator

p_cop_calc()

Calculates the power consumption and the COP of the heat pump in the ‘detailed’ calculation mode

step (inputs)
Performs simulation step with the step size ‘step_size’

step_error ()

Sets the outputs of the heat pump model to O

While the Aplib heat pump model available in the package can simulate the performance of the different heat pumps from
the keymark data, the tespy model provides fewer options. In order to simulate different heat pumps, apart from the ones
already available in this package, the heat pumps have to be intergrated to the fespy model. An example of the integration
of the “Air_30kW” heat pump, based on “ait-deutschland LW-300(L)”, shows the procedure in detail. The development
of the model to simulate the performance of this specific heat pump is described in the steps below:

Step 1: Initial Parametrization
Step 2: Compressor efficiency map
Step 3: fast’ mode data

mosaik-heatpump (v1.0.0) provides models for the simulation of heating systems- consisting of heat pumps, hot water
tanks, and controllers - and adapters for the co-simulation of these models using mosaik.

Installation & Tests

You can install mosaik-heatpump with pip:

[pip install mosaik-heatpump ]

You can run the tests with:

{pytest ]

Getting started

A description of the different models available in the package and examples to use individual models can be found /ere.

Example scenarios for the co-simulation of all the models can be found ’ere.
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Getting help

Please report bugs and ideas for improvement to our issue tracker.

For questions and general discussion about mosaik-heatpump, you can use mosaik’s GitHub Discussions.

Citation

The model was initially used and presented here , but it is not described in detail. We plan to publish a paper presenting
the package, and will update this section after the publication.

License

The package is completely open source and is covered under the MIT License. # mosaik-examples
* The mosaik-demo contains a simple demo scenario for mosaik.
¢ The DES demo is a simple example scenario showing the new mosaik 3.0 DES features

¢ COmmunication SIMulation for Agents (cosima) is an example scenario with integrated communication simulation
based on OMNeT++.

* The aiomas demo is an example project, demonstrating how to couple a multi-agent system written in aiomas to
mosaik.

¢ The mango demo is an example project, demonstrating how to couple a multi-agent system written in mango to
mosaik.

* The binder tutorials contains python notebooks with example scenraios that can be executed on mybinder.
%« mosaik-tools

* icons for the energy domain

* maverig mosaik GUI is a visualization component, which is not maintained anymore.
#. pasic simulators
In order to test custom-made simulators, two basic simulators are provided to use and connect to.

e The TnputSimulator is a simulator that can be used to feed either a constant value or the value of a function
into a designated simulator ready to handle the data.

e The OutputSimulator writes data from a custom simulator into a python dictionary. Users can access this
dictionary by calling get_dict on a created output simulator entity.

Below is an example code snippet that connects the input simulator with the output simulator and executes ten time steps.
After the simulation is done, the dictionary including the values received by the input simulator is printed.

# The output simulator is initialized.
output_dict = world.start ("OutputSim")

# Two entities of the output simulator model are created.
output_model = output_dict.Dict.create(2)

# The input simulator is initialized.
input = world.start ("InputSim", step_size=1)

# One function input simulator entity is created.
input_model_func = input.Function.create(l, function=sample_function)

(continues on next page)
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(continued from previous page)

# One constant input simulator entity is created.
input_model_const = input.Constant.create(l, constant=2)

# The input entities are connected to separate output entities
world.connect (input_model_func[0], output_model[1l], "value")
world.connect (input_model_const[0], output_model[0], "value")

# Run simulation.
world.run (until=END)

# Dictionary content is printed.
pprint (output_dict.get_dict (output_model[0] .eid))
pprint (output_dict.get_dict (output_model[1l].eid))

#. external components

These components are developed by external users of mosaik and we can not guarantee or support the flawless integration
of these tools with mosaik. If you also have implemented additional tools for mosaik, simulation models or adapters, feel
free to contact us at mosaik [ A T ] offis.de to be listed here.

pysimmods contains some simulation models, which can be used in mosaik scenarios.
MIDAS contains a semi-automatic scenario configuration tool.
mosaik-docker is a package for the deployment of mosaik with Docker.

ZDIN-ZLE components contains the research and development of digitalized energy systems in ZLE using mosaik
(collection of simulation models).

nestli (Neighborhood Energy System Testing towards Large-scale Integration) is a co-simulation environment for
benchmarking the performance of BACS (building automation and control systems). Is uses EnergyPlus and FMUs
with mosaik.

toolbox_doe_sa is a toolbox with Design of Experiment (DoE) and Sensitivity Analysis (SA) methods developed
in the ERIGrid 2.0 project.

mosaik-demod is a domestic energy demand modeling simulator.

palestrai-mosaik is an adapter to integrate palaestr Al (an universal framework for multi-agent artificial intelligence)
into mosaik.

QEMS - Quarter Energy Management System contains simulation components, which are used to simulate an
energy management system for neighborhoods for analyzing and optimizing energy flows.

. .
i external scenarios

These scenarios are developed by external users of mosaik and we can not guarantee or support the flawless practicability.

Benchmark Model Multi-Energy Networks contains the implementation of a multi-energy networks (heat and elec-
tricity grid) benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Multi-Energy Networks STL is based on the multi-energy networks benchmark and contains a
same time loop for improved initialization of the simulators.

ZDIN-ZLE scenarios contains the research and development of digitalized energy systems in ZLE using mosaik
(collection of simulation scenarios).

QEMS - Quarter Energy Management System Scenarios contains scenarios of an energy management system for
neighborhoods for analyzing and optimizing energy flows.
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CHAPTER
FIVE

TUTORIALS

In the basic tutorial you’ll learn how you can integrate simulators and control strategy into the mosaik ecosystem as well
as how you create simulation scenarios and execute them.

In the first part, we’ll implement the Sim API for a simple example simulator. We’ll also create a simulation scenario in
which that simulator will send its data to mosaik-hdf5 which will store it in an HDFS5 database.

In the second part, we’ll also integrate a simple control mechanism into mosaik. We’ll then create a scenario in which
that control mechanism controls the example simulator from part one.

In the third part, we’ll implement an additional master controller, which communicates with the other controllers. This
communication takes place as same-time loop without progress in simulation time and illustrated this new mosaik 3.0
feature. It can be used for negotiation between multiple agents or controllers, like shown in the tutorial at hand, but also
for initialization of simulations consisting of multiple phsycial systems.

In the next part, we’ll implement a scenario with a new controller, which sets external events. These external events come
from a simple button click-event of a graphical user interface. Therefore, with this new mosaik 3.0 feature it is possible
to do Human-in-the-Loop simulations to support human interactions.

The Odysseus tutorial you'll learn how to connect the data-stream-management-tool Odysseus to mosaik. The second
part shows some examples on how to use Odysseus. This tutorial may also be of some use when you want to connect any
other component via ZeroMQ.

The Java API tutorial shows you how to use the Java API. This API is intended to connect simulators written in Java to
mosaik. You can use the Java-API also as a RCP-Server if you want to run your Java-simulator on a separate machine.

Basic tutorial

5.1 Integrating a simulation model into the mosaik ecosystem

In this section we'll first implement a simple example simulator. We’ll then implement mosaik’s Sim-API step-by-step.

5.1.1 The model

We want to implement a very simple model with the following behavior:
e valy = init_val
e val, =val;_ +deltafori e N,i >0, delta € Z

That simply means our model has a value val to which we add some delta (which is a positive or negative integer) at every
simulation step. Our model has the attribute delta (with value 1 by default) which can be changed by control mechanisms
to alter the behavior of the model. And it has the (output) attribute val which is its current value.

Here is a possible implementation of that simulation model in Python:
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Fig. 1: Schematic diagram of our example model. You can change the delta and collect the val as output.

# example_model.py

mn

This module contains a simple example model.

min

class Model:
""'"Simple model that increases its value *val* with some *delta* every
step.

You can optionally set the initial value *init_val*. It defaults to "0 °

def _ init_ (self, init_val=0):
self.val = init_val
self.delta = 1

def step(self):
"""Perform a simulation step by adding *delta* to *val*."""
self.val += self.delta

5.1.2 Setup for the APl implementation

So lets start implementing mosaik’s Sim-API for this model. We can use the Python %igh-level API for this. This package
eases our workload, because it already implements everything necessary for communicating with mosaik. It provides an
abstract base class which we can sub-class. So we only need to implement four methods and we are done.

If you already installed mosaik and the demo, you already have this package installed in your mosaik virtualenv.

We start by creating anew simulator_mosaik.py and import the module containing the mosaik API as well as our
model:

# simulator _mosaik.py
mrrn

Mosaik interface for the example simulator.

mn

import mosaik_api_v3

import example_model
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5.1.3 Simulator meta data

Next, we prepare the meta data dictionary that tells mosaik which fime paradigm it follows (time-based, event-based, or
hybrid), which models our simulator implements and which parameters and attributes it has. Since this data is usually
constant, we define this at module level (which improves readability):

'type': 'hybrid',
'models': {
'ExampleModel': {
'public': True,

'params': ['init_val'],
'attrs': ['delta', 'val'],
'trigger': ['delta'l],

by
by

In this case we create a hybrid simulator, because we want to be able to control it using delta events later. For now,
we won’t use de 1t a, though. We added our “ExampleModel” model with the parameter init_val and the attributes delta
and val. At this point we don’t care if they are inputs or outputs. We just list everything we can read or write. The public
flag should usually be True. You can read more about it in the Sim APl docs. From this information, mosaik deduces
that our model could be used in the following way:

# Model name and "params" are used for constructing instances:
model = example_model.Model (init_val=42)

# "attrs" are normal attributes:

print (model.val)

print (model.delta)

5.1.4 The Simulator class

The package mosaik_api_v3 defines a base class Simulator for which we now need to write a sub-class:

class ExampleSim (mosaik_api_v3.Simulator) :
def _ init__ (self):
super () .__init__ (META)

self.eid_prefix = 'Model '
self.entities = {} # Maps EIDs to model instances/entities
self.time = 0
In our simulator’s __init__ () method (the constructor) we need to call Simulator.__init__ () and pass the

meta data dictionary to it. Simulator.__init__ () will add some more information to the meta data and set it as
self.meta to our instance.

We also set a prefix for our entity IDs and prepare a dictionary which will hold some information about the entities that
we gonna create.

We can now start to implement the four API calls init, create, step and get_data:
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5.1.5 init()

This method will be called exactly once while the simulator is being started via Wor1d. start. Itis used for additional
initialization tasks (e.g., it can handle parameters that you pass to a simulator in your scenario definition). It must return
the meta data dictionary self .meta:

def init(self, sid, time_resolution, eid_prefix=None) :
if float (time_resolution) != 1.:
raise ValueError ('ExampleSim only supports time_resolution=1., but'
! was set.' % time_resolution)
if eid_prefix is not None:
self.eid_prefix = eid_prefix
return self.meta

The first argument is the ID that mosaik gave to that simulator instance. The second argument is the time resolution of
the scenario. In this example only the default value of /. (second per integer time step) is supported. If you set another
value in the scenario, the simulator would throw an error and stop.

In addition to that, you can define further (optional) parameters which you can later set in your scenario. In this case, we
can optionally overwrite the eid_prefix that we definedin __init__ ().

5.1.6 create()

create () is called in order to initialize a number of simulation model instances (entities) within that simulator. It must
return a list with some information about each entity created:

def create(self, num, model, init_val):
next_eid = len(self.entities)
entities = []

for i in range (next_eid, next_eid + num) :
model_instance = example_model .Model (init_val)
eid = ' ' % (self.eid_prefix, 1)
self.entities[eid] = model_instance
entities.append({'eid': eid, 'type': model})

return entities

The first two parameters tell mosaik how many instances of which model you want to create. Asin init (), you can
specify additional parameters for your model. They must also appear in the params list in the simulator meta data or
mosaik will reject them. In this case, we allow setting the initial value iniz_val for the model instances.

For each entity, we create a new entity ID' and a model instance. We also create a mapping (self.entities) from
the entity ID to our model. For each entity we create we also add a dictionary containing its ID and type tothe entities
list which is returned to mosaik. In this example, it has num entries for the model model, but it may get more complicated
if you have, e.g., hierarchical models.

I Although entity IDs can be plain integers, it is advisable to use something more meaningful to ease debugging and analysis.
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5.1.7 step()

The step () method tells your simulator to perform a simulation step. It receives its current simulation time, a dictionary
with input values from other simulators (if there are any), and the time until the simulator can safely advance its internal
time without creating a causality error. For time-based simulators (as in our example) it can be safely ignored (it is equal
to the end of the simulation then). The method returns to mosaik the time at which it wants to do its next step. For
event-based and hybrid simulators a next (self-)step is optional. If there is no next self-step, the return value is None/null.

Note: The max_advance value is not necessarily used and is only for special use cases where simulators can advance in
time without expecting new inputs from other simulators, e.g. for the integration of a communication simulation.

def step(self, time, inputs, max_advance) :
self.time = time
# Check for new delta and do step for each model instance:
for eid, model_instance in self.entities.items():
if eid in inputs:

attrs = inputs[eid]
for attr, values in attrs.items () :
new_delta = sum(values.values())

model_instance.delta = new_delta
model_instance.step ()

return time + 1 # Step size is 1 second

In this example, the inputs could be something like this:

{
'Model 0': {
'delta': {'src_id_0': 23},
by
'Model_1':
'delta': {'src_id_1': 42},
'val': {'src_id_1': 20},
}I

The inner dictionaries containing the actual values may contain multiple entries if multiple source entities provide input for
another entity. In the case above, we have two source entities, ‘Model_0’ providing the delta value to the destination entity
(object of ExampleSim) and ‘Model_1’ providing the delta and val value to the destination entity (object of ExampleSim).
The source entitiy, ‘Model_0’ has the attribute ‘delta’ as the key to another nested dictionary which contains the simulator
id and its corresponding ‘delta’ value. Similarly the source entity ‘Model_1" has the attributes ‘delta’ and ‘val’ as the keys
to two other nested dictionaries which contain the simulator id and its corresponding ‘delta’ and ‘val’ values.

The structure of the inputs dictionary created by mosaik is always the same as depicted above, only the number of source
entities (dependent on the connections in the scenario (‘Model_0’ and ‘Model_1’ in our case)) and the number of attributes
passed by the source entity varies. The first key of the nested dictionary will be the source entity (‘Model_1"), the following
keys will be the attributes passed by this source entity to the destination entity (‘delta’ {‘src_id_1": 42}, ‘val’: {‘src_id_1":
20}).

The simulator receiving these inputs is responsible for aggregating them (e.g., by taking their sum, minimum or maximum.
Since we are not interested in the source’s IDs, we convert that dict to a list with values .values () before we calculate
the sum of all input values.

After we converted the inputs to something that our simulator can work with, we let it finally perform its next simulation
step.
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The return value t ime + 1 tells mosaik that we wish to perform the next step in one second (in simulation time), as the
time_resolution is 1. (second per integer step). Instead of using a fixed (hardcoded) step size you can easily implement
any other stepping behavior.

5.1.8 get_data()

The get_data () call allows other simulators to get the values of the delta and val attributes of our models (the
attributes we listed in the simulator meta data):

def get_data(self, outputs):
data = {}
for eid, attrs in outputs.items() :
model = self.entities[eid]
data['time'] = self.time
datal[eid] = {}
for attr in attrs:
if attr not in self.meta['models']['ExampleModel']['attrs']:
raise ValueError ('Unknown output attribute: ' % attr)

# Get model.val or model.delta:
data[eid] [attr] = getattr (model, attr)

return data

The outputs parameter contains the query and may in our case look like this:

{
'Model_0': ['delta', 'value'],
'Model_1': ['value'],

The Outputs dictionary may contain multiple keys if multiple destination entities ask for the output from the source entity.
In this case we have two destination entities ‘Model_0" and ‘Model_1" which are requesting for the source attributes.
‘Model_0’ is requesting for the two source attributes ‘delta’ and ‘value’, whereas ‘Model_1 is requesting for 1 source
attribute ‘value’. The structure of the Outputs dictionary created by mosaik is always the same as depicted above, only
the number of destination entities (dependent on the connections in the scenario (‘Model_0’ and ‘Model_1’ in our case))
and the number of attributes requested by the destination entity varies.

In our implementation we loop over each entity ID for which data is requested. We then loop over all requested attributes
and check if they are valid. If so, we dynamically get the requested value from our model instance via getattr (obj,
'attr'). We store all values in the dat a dictionary and return it when we are done.

The expected return value would then be:

{
'Model_0': {'delta': 1, 'value': 24},
'Model_1': {'value': 3},
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5.1.9 Making it executable

The last step is adding a main () method to make our simulator executable (e.g., viapython -m simulator_mo-
saik HOST:PORT). The package mosaik_api_v3 contains the method start_simulation () which creates
a socket, connects to mosaik and listens for requests from it. You just call it in your main () and pass an instance of
your simulator class to it:

def main () :
return mosaik_api_v3.start_simulation (ExampleSim())

if  name_ == '_ _main '

main ()

Simulators running on different nodes than the mosaik instance are supported explicitly with the mosaik Python-API v2.4
upward via the remote flag. A simulator with the start_simulation () method inits main () can then be called
e.g. via

[python simulator_mosaik —-r HOST:PORT ]

in the command line. The mosaik scenario, started independently, can then connect to the simulator via the statement
connect: HOST : PORT in its “sim_config” ( Configuration). Note that it may make sense to introduce a short waiting time
into your scenario to give you enough time to start both processes. Alternatively, the remote connection of simulators
supports also a timeout (via the timeout flag, e.g. —t 60 in the command line call will cause your simulator to wait for 60
seconds for an initial message from mosaik).

5.1.10 Summary

We have now implemented the mosaik Sim-API for our simulator. The following listing combines all the bits explained
above:

# simulator_mosaik.py

mn

Mosaik interface for the example simulator.

mn

import mosaik_api_v3

import example_model

META = {
'type': 'hybrid',
'models': {

'ExampleModel': {
'public': True,

'params': ['init_wval'],
'attrs': ['delta', 'wval'],
'trigger': ['delta'],

by
Hy

class ExampleSim (mosaik_api_v3.Simulator) :

(continues on next page)
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(continued from previous page)

def _ init_ (self):
super () .__init__ (META)

self.eid _prefix = 'Model '
self.entities = {} # Maps EIDs to model instances/entities
self.time = 0

def init(self, sid, time_resolution, eid_prefix=None) :
if float (time_resolution) != 1.:
raise ValueError ('ExampleSim only supports time_resolution=1., but'
' 25 was set.' % time_resolution)
if eid_prefix is not None:
self.eid _prefix = eid_prefix
return self.meta

def create(self, num, model, init_val):
next_eid = len(self.entities)
entities = []

for i in range (next_eid, next_eid + num):
model_instance = example_model.Model (init_val)
eid = '"$s%d' % (self.eid_prefix, i)
self.entities[eid] = model_instance

entities.append({'eid': eid, 'type': model})

return entities

def step(self, time, inputs, max_advance) :
self.time = time
# Check for new delta and do step for each model instance:
for eid, model_instance in self.entities.items():
if eid in inputs:

attrs = inputs[eid]
for attr, values in attrs.items{():
new_delta = sum(values.values())

model_instance.delta = new_delta
model_instance.step()
return time + 1 # Step size is 1 second

def get_data(self, outputs):
data = {}
for eid, attrs in outputs.items():
model = self.entities[eid]
data['time'] = self.time
dataleid] = {}
for attr in attrs:
if attr not in self.meta['models']['ExampleModel']['attrs']:

o)

raise ValueError ('Unknown output attribute: %s' % attr)

# Get model.val or model.delta:
datal[eid] [attr] = getattr (model, attr)

return data

(continues on next page)
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(continued from previous page)

def main () :
return mosaik_api_v3.start_simulation (ExampleSim())

if name_ == '_ _main__ ':
main ()

We can now start to write our first scenario, which we will do in the next section.

5.2 Creating and running simple simulation scenarios

We will now create a simple scenario with mosaik in which we use a simple data collector to print some output from our
simulation. That means, we will instantiate a few ExampleModels and a data monitor. We will then connect the model
instances to that monitor and simulate that for some time.

5.2.1 Configuration
You should define the most important configuration values for your simulation as “constants” on top of your scenario file.
This makes it easier to see what’s going on and change the parameter values.

Two of the most important parameters that you need in almost every simulation are the simulator configuration and the
duration of your simulation:

# Sim config
SIM_CONFIG: mosaik.SimConfig = {
'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',
}I
'Collector': {
'ecmd': ! collector.py o
}I
}
END = 10 # 10 seconds

The sim config specifies which simulators are available and how to start them. In the example above, we list our ExampleSim
as well as Collector (the names are arbitrarily chosen). For each simulator listed, we also specify how to start it. (If
you are using type checking, you can import SimConfig from mosaik.scenario and change the first line to
SIM_CONFIG: SimConfig = {,instead.)

Since our example simulator is, like mosaik, written in Python 3, mosaik can just import it and execute it in-process. The
line 'python': 'simulator_mosaik:ExampleSim' tells mosaik to import the package simulator_mo-
saik and instantiate the class ExampleSim from it.

The data collector will be started as external process which will communicate with mosaik via sockets. The line
'cmd!' : '$ (python)s collector.py $%(addr)s' tells mosaik to start the simulator by executing the
command python collector.py. Beforehand, mosaik replaces the placeholder % (python) s with the current
python interpreter (the same as used to execute the scenario script) and % (addr) s with its actual socket address HOST-
NAME:PORT so that the simulator knows where to connect to.

The section about the Sim Manager explains all this in detail.

Here is the complete file of the data collector. Take care of adding it to your example:
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mn

A simple data collector that prints all data when the simulation finishes.

mn

import collections

import mosaik_api_v3

META = {
'type': 'event-based',
'models': {

'Monitor': {
'public': True,
'any_inputs': True,
'params': [],
‘attrs': [],

}I

}I
}

class Collector (mosaik_api_v3.Simulator) :
def _ init_ (self):
super () .__init__ (META)
self.eid = None
self.data = collections.defaultdict (lambda:
collections.defaultdict (dict))

def init(self, sid, time_resolution) :
return self.meta

def create(self, num, model):
if num > 1 or self.eid is not None:
raise RuntimeError ('Can only create one instance of Monitor.')

self.eid = 'Monitor'
return [{'eid': self.eid, 'type': model}]

def step(self, time, inputs, max_advance) :
data = inputs.get (self.eid, {})
for attr, values in data.items () :
for src, value in values.items() :
self.data[src] [attr] [time] = wvalue

return None
def finalize(self):

print ('Collected data:'")
for sim, sim_data in sorted(self.data.items()):

print ('- %s:' % sim)
for attr, values in sorted(sim_data.items()) :
print (' - %s: %s' % (attr, wvalues))
if name_ == '__main__ ':

mosaik_api_v3.start_simulation(Collector())
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As its name suggests it collects all data it receives each step in a dictionary (including the current simulation time) and
simply prints everything at the end of the simulation.

5.2.2 The World

The next thing we do is instantiating a Wor 1 d object. This object will hold all simulation state. It knows which simulators
are available and started, which entities exist and how they are connected. It also provides most of the functionality that
you need for modelling your scenario:

# Create World
world = mosaik.World (SIM_CONFIG)

To get access to mosaik’s world, we need to import mosaik at the beginning of our scenario script. We also import
mosaik.util to getaccess to some helper methods later on.

# demo_1.py
import mosaik
import mosaik.util

5.2.3 The scenario

Before we can instantiate any simulation models, we first need to start the respective simulators. This can be done by
calling Wworld. start. It takes the name of the simulator to start and, optionally, some simulator parameters which
will be passed to the simulators init () method. So lets start the example simulator and the data collector:

# Start simulators
examplesim = world.start ('ExampleSim', eid_prefix='Model ')
collector = world.start ('Collector'")

We also set the eid_prefix for our example simulator. What gets returned by World. start is called a model factory.

We can use this factory object to create model instances within the respective simulator. In your scenario, such an instance
is represented as an Ent it y. The model factory presents the available models as if they were classes within the factory’s
namespace. So this is how we can create one instance of our example model and one ‘Monitor’ instance:

# Instantiate models
model = examplesim.ExampleModel (init_val=2)
monitor = collector.Monitor ()

The init_val parameter that we passed to ExampleModel is the same as in the create () method of our Sim API
implementation.

Now, we need to connect the example model to the monitor. That’s how we tell mosaik to send the outputs of the example
model to the monitor.

# Connect entities
world.connect (model, monitor, 'val', 'delta')

The method World. connect takes one entity pair — the source and the destination entity, as well as a list of attributes
or attribute tuples. If you only provide single attribute names, mosaik assumes that the source and destination use the
same attribute name. If they differ, you can instead pass a tuple like ('val_out', 'val_in').

Quite often, you will neither create single entities nor connect single entity pairs, but work with large(r) sets of entities.
Mosaik allows you to easily create multiple entities with the same parameters at once. It also provides some utility
functions for connecting sets of entities with each other. So lets create two more entities and connect them to our monitor:
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# Create more entities
more_models = examplesim.ExampleModel.create (2, init_val=3)
mosaik.util.connect_many_to_one (world, more_models, monitor, 'val', 'delta')

Instead of instantiating the example model directly, we called its static method create () and passed the number

of instances to it. It returns a list of entities (two in this case). We used the utility function mosaik.util.
connect_many_to_one to connect all of them to the database. This function has a similar signature as Wor1d.

connect, but the first two parameters are a world instance and a set (or list) of entities that are all connected to the

dest_entity.

Mosaik also provides the function mosaik.util.connect_randomly. This method randomly connects one set
of entities to another set. These two methods should cover most use cases. For more special ones, you can implement

custom functions based on the primitive Wor1d. connect.

5.2.4 The simulation

In order to start the simulation, we call Wor1d. run and specify for how long we want our simulation to run:

# Run simulation
world.run (until=END)

Executing the scenario script will then give us the following output:

Collected data:
- ExampleSim-0.Model_0:

= ekeltag J0g 4, 41g 1, 28 i, 33 41, 4g i, 53 4, Gg 1, 7g i, B 1, 9s 1}

- val: {O: 3, 1: 4, 2: 5, 3: 6, 4: 7, 5: 8, 6: 9, 7: 10, 8: 11, 9: 12}
— ExampleSim-0.Model_1:

- delta: {O: 21, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}

- val: {O: 4, 1: 5, 2: 6, 3: 7, 4: 8, 5: 9, 6: 10, 7: 11, 8: 12, 9: 13}
— ExampleSim-0.Model_2:

- delta: {O: 21, 1: 21, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}

- val: {O: 4, 1: 5, 2: 6, 3: 7, 4: 8, 5: 9, 6: 10, 7: 11, 8: 12, 9: 13}

Mosaik will also produce some diagnostic output along the lines of

2022-10-12 15:31:01.351 | INFO | mosaik.scenario:start:131 - Starting "ExampleSim
—" as "ExampleSim-0" .
2022-10-12 15:31:01.352 | INFO | mosaik.scenario:start:131 - Starting "Collector"_

—as "Collector-0"
INFO:mosaik_api_v3:Starting Collector

2022-10-12 15:31:01.430 | INFO | mosaik.scenario:run:381 - Starting simulation.
100 | HEEEEEEEEEEENEEEE NN 10/10 [00:00<00:00, 1996.05steps/s]
2022-10-12 15:31:01.446 | INFO | mosaik.scenario:run:425 - Simulation finished.
—successfully.

If you don’t want the progress bar, you can run the simulation with

[world.run(untiIZEND, print_progress=False)

instead. For even more progress bars, set print_progress="'individual', instead.
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5.2.5 Summary

This section introduced you to the basic of scenario creation in mosaik. For more details you can check the guide to
scenarios.

For your convenience, here is the complete scenario that we created in this tutorial. You can use this for some more
experiments before continuing with this tutorial:

# demo_1.py

import mosaik
import mosaik.util
# End: Imports

# Sim config
SIM_CONFIG: mosaik.SimConfig = {
'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',
}I
'Collector': {
'emd': ! collector.py P
}I
}
END = 10 # 10 seconds
# End: Sim config

# Create World
world = mosaik.World (SIM_CONFIG)
# End: Create World

# Start simulators

examplesim = world.start ('ExampleSim', eid_prefix='Model ")
collector = world.start('Collector')

# End: Start simulators

# Instantiate models

model = examplesim.ExampleModel (init_val=2)
monitor = collector.Monitor ()

# End: Instantiate models

# Connect entities
world.connect (model, monitor, 'val', 'delta')
# End: Connect entities

# Create more entities

more_models = examplesim.ExampleModel.create (2, init_val=3)
mosaik.util.connect_many_to_one (world, more_models, monitor, 'val', 'delta')
# End: Create more entities

# Run simulation
world.run (until=END)

The next part of the tutorial will be about integrating control mechanisms into a simulation.
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5.3 Adding a control mechanism to a scenario

Now that we integrated our first simulator into mosaik and tested it in a simple scenario, we should implement a control
mechanism and mess around with our example simulator a little bit.

As you remember, our example models had a value to which they added something in each step. Eventually, their value
will end up being very high. We'll use a multi-agent system to keep the values of our models in [-3, 3]. The agents will
monitor the current value of their respective models and when it reaches -3/3, they will set delta to 1/-1 for their model.

Implementing the Sim API for control strategies is very similar to implementing it for normal simulators. We start again
by importing the mosaik_api_ v3 package and defining the simulator meta data:

# controller.py

mrn

A simple demo controller.

mrn

import mosaik_api_v3

META = {
'type': 'event-based',
'models': {
'Agent': {
'public': True,
'params': [],
'attrs': ['val_in', 'delta'l],

by
by

We set the t ype of the simulator to ‘event-based’. As we have learned, this has two main implications:

1. Whenever another simulator provides new input for the simulator, a step is triggered (at the output time). So we don’t
need to take care of the synchronisation of the models and agents. As our example simulator is of type time-based, it is
only stepped at its self-defined times and will thus not be triggered by (potential) outputs of the agents. It will receive any
output of the agents in its subsequent step.

2. The provision of output of event-based simulators is optional. So if there’s nothing to report at a specific step, the
attributes can (and should be) omitted in the get_data’s return dictionary.

Our control mechanism will use agents to control other entities. The agent has no parameters and two attributes, the input
‘val_in’ and the output ‘delta’.

Let’s continue and implement mosaik_api_v3.Simulator:

class Controller (mosaik_api_v3.Simulator) :
def _ init__ (self):
super () .__init__ (META)

self.agents = []
self.data = {}
self.time = 0

Again, nothing special is going on here. We pass our meta data dictionary to our super class and set an empty list for our
agents.

Because our agents don’t have an internal concept of time, we don’t need to take care of the time_resolution of the scenario.
And as there aren’t any simulator parameters either, we don’t need to implement init. The default implementation will
return the meta data, so there’s nothing we need to do in this case.
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Implementing create is also straight forward:

def create(self, num, model):

n_agents = len(self.agents)

entities = []

for i in range(n_agents, n_agents + num) :
eid = '"Agent_2%d' % i

self.agents.append(eid)
entities.append({'eid': eid, 'type': model})

return entities

Every agent gets an ID like “Agent_*<num>*”. Because there might be multiple c reat e calls, we need to keep track of
how many agents we already created in order to generate correct entity IDs. We also create a list of { ‘eid’: ‘Agent_<num>’,
type’: ‘Agent’} dictionaries for mosaik.

You may have noticed that we, in contrast to our example simulator, did not actually instantiate any real simulation models
this time. We just pretend to do it. This okay, since we’ll implement the agent’s “intelligence” directly in step:

def step(self, time, inputs, max_advance) :
self.time = time
data = {}
for agent_eid, attrs in inputs.items() :
delta_dict = attrs.get('delta', {})
if len(delta_dict) > 0:
datalagent_eid] = {'delta': list (delta_dict.values())[0]}
continue

values_dict = attrs.get ('val_in', {})
if len(values_dict) != 1:
raise RuntimeError ('Only one ingoing connection allowed per
'agent, but "?%s" has !

% (agent_eid, len(values_dict)))
value = list (values_dict.values()) [0]

The input s arguments is a nested dictionary and will look like this:

{
'Agent_0': {'val_in': {'ExampleSim-0.Model 0': -1}},
'Agent_1': {'val_in': {'ExampleSim-0.Model_1': 1}},
'Agent_2': {'val_in': {'ExampleSim-0.Model_2': 3}}

For each agent, there’s a dictionary with all input attributes (in this case only ‘val_in’), containing the source entities (their
full_id) with the corresponding values as key-value pairs.

First we initialize an empty data dict that will contain the set-points that our control mechanism is creating for the
models of the example simulator. We'll fill this dict in the following loop. We iterate over all agents and extract its input
‘val_in’; so values_dict is a dict containing the current values of all models connected to that agent. In our example
we only allow to connect one model per agent, and fetch its value.

‘We now do the actual check:

if value >= 3:
delta = -1
elif value <= -3:
delta = 1

else:
continue
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If the value is < -3 or = 3, we have to set a new delta value. Else, we don’t need to do anything and can continue with a

new iteration of the loop.

If we have a new delta, we add it to the dat a dict:

[

datalagent_eid] = {'delta': delta}

After finishing the loop, the data dict may look like this:

{
'Agent_0': {'delta': 1},
'Agent_2': {'delta': -1},

Agent_0 sets the new delta = 1, and Agent_2 sets the new delta = -1. Agent_1 did not set a new delta.

At the end of the step, we put the data dict to the class attribute self.data, to make it accessible in the get_data method

[

self.data = data

We return None to mosaik, as we don’t want to step ourself, but only when the controlled models provide new values.

[

return None

)

After having called step, mosaik requests the new set-points via the get_data function. In principle we could just return
the self.data dictionary, as we already constructed that in the adequate format. For illustrative purposes we do it manually

anyhow. Additionally, if we do it like that, we can only send back the attributes that are actually ne
to) other simulators:

eded by (connected

def get_data(self, outputs):
data = {}
for agent_eid, attrs in outputs.items () :
for attr in attrs:

if attr != 'delta':
raise ValueError ('Unknown output attribute " "' % attr)
if agent_eid in self.data:
data['time'] = self.time
data.setdefault (agent_eid, {})[attr] = self.datalagent_eid] [attr]

return data

Here is the complete code for our (very simple) controller / mutli-agent system:

# controller.py

mrn

A simple demo controller.

mn

import mosaik_api_v3

META = {
'type': 'event-based',
'models’': {
'Agent': {
'public': True,
'params': [],
'attrs': ['val_in', 'delta'l],

(continues on next page)
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by
by

class Controller (mosaik_api_v3.Simulator) :
def _ init_ (self):
super () .__init__ (META)
self.agents = []
self.data = {}
self.time = 0

def create(self, num, model):
n_agents = len(self.agents)
entities = []
for i in range(n_agents, n_agents + num) :
eid = '"Agent_2%d' $ i
self.agents.append(eid)
entities.append({'eid': eid, 'type': model})

return entities

def step(self, time, inputs, max_advance) :
self.time = time
data = {}
for agent_eid, attrs in inputs.items():
delta_dict = attrs.get('delta', {})
if len(delta_dict) > 0:
datalagent_eid] = {'delta': list(delta_dict.values()) [0]}

continue
values_dict = attrs.get('val_in', {})
if len(values_dict) != 1:
raise RuntimeError ('Only one ingoing connection allowed per '
'agent, but "2%s" has !
% (agent_eid, len(values_dict)))
value = list (values_dict.values()) [0]
if value >= 3:
delta = -1
elif value <= -3:
delta = 1
else:
continue
datalagent_eid] = {'delta': delta}

self.data = data
return None

def get_data(self, outputs):
data = {}
for agent_eid, attrs in outputs.items():
for attr in attrs:
if attr != 'delta':
raise ValueError ('Unknown output attribute " "' % attr)
(continues on next page)

5.3. Adding a control mechanism to a scenario 67




mosaik Documentation, Release 3.3.0

(continued from previous page)

if agent_eid in self.data:
data['time'] = self.time
data.setdefault (agent_eid, {}) [attr] = self.datalagent_eid] [attr]

return data

def main() :
return mosaik_api_v3.start_simulation (Controller())

]

if _ name_ == main__ ':

main ()

Next, we’ll create a new scenario to test our controller.

5.4 Integrating a control mechanism

The scenario that we’re going to create in this part of the tutorial will be similar to the one we created before but incorporate
the control mechanism that we just created.

Again, we start by setting some configuration values and creating a simulation world:

# demo_2.py
import mosaik
import mosaik.util

# Sim config
SIM_CONFIG = {
'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',
by
'ExampleCtrl': {
'python': 'controller:Controller',
by
'Collector': {
'emd': ! collector.py o
}I
}
END = 10 # 10 seconds

# Create World
world = mosaik.World (SIM_CONFIG)

We added ExampleCtrl to the sim config and let it be executed in-process with mosaik.

‘We can now start one instance of each simulator:

# Start simulators

with world.group () :
examplesim = world.start ('ExampleSim', eid_prefix='Model ")
examplectrl = world.start ('ExampleCtrl')

collector = world.start ('Collector'")

We'll create three model instances, the same number of agents, and one database:
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# Instantiate models

models = [examplesim.ExampleModel (init_val=i) for i in range (-2, 3, 2)]
agents = examplectrl.Agent.create (len (models))
monitor = collector.Monitor ()

We use a list comprehension to create three model instances with individual initial values (-2, 0 and 2). For instantiating
the same number of agent instances we use create () which does the same as a list comprehension but is a bit shorter.

Finally we establish pairwise bi-directional connections between the models and the agents:

# Connect entities

for model, agent in zip (models, agents):
world.connect (model, agent, ('val', 'val in'))
world.connect (agent, model, 'delta', weak=True)

The important thing here is the weak=True argument that we pass to the second connection. This tells mosaik how to
resolve the cyclic dependency, i.e. which simulator should be stepped first in case that both simulators have a scheduled
step at the same time. (In our example this will not happen, as the agents are only stepped by the models’ outputs.)

Finally, we can connect the models and the agents to the monitor and run the simulation:

# Connect to monitor
mosaik.util.connect_many_to_one (world, models, monitor, 'wval', 'delta')
mosaik.util.connect_many_to_one (world, agents, monitor, 'delta')

# Run simulation
world.run (until=END)

In the printed output of the collector, you can see two important things: The first is that the agents only provide output
when the delta of the controlled model is to be changed. And second, that the new delta is set at the models’ subsequent
step after it has been derived by the agents.

Collected data:

ExampleCtrl-0.Agent_0:

- delta: {2: -1, 5: 1, 8: -1}

— ExampleCtrl-0.Agent_1:

- delta: {1: -1, 4: 1, 7: -1}

ExampleCtrl-0.Agent_2:

- delta: {0: -1, 3: 1, 6: -1, 9: 1}

ExampleSim-0.Model_O:

- delta: {O: 21, 1: 1, 2: -1, 3: -1, 4: -1, 5: 1, 6: 1, 7: 1, 8: -1, 9: -1}
- val: {0: O, 1: 2, 2: 2, 3: 0, 4: -2, 5: -2, 6: 0, 7: 2, 8: 2, 9: 0}
ExampleSim-0.Model_1:

- delta: {O0: 21, 1: -1, 2: -1, 3: -1, 4: 1, 5: 1, 6: 1, 7: -1, 8: -1, 9: -1}
— val: {0 2, 1: 2, 2. 0, 3: —2, 4: -2, 5: 0, 6: 2, 7: 2, 8: 0, 9: 2}
ExampleSim-0.Model_2:

- delta: {O0: -1, 1: -1, 2: -1, 3: 1, 4: 1, 5: 1, 6: -1, 7: -1, 8: -1, 9: 1}
— val: {0: 2, 1: 0, 2 —2, 34 —2, 4: 0, 5: 2, 6: 2, 7: 0, 8: -2, 9: 2}

This is the complete scenario:

# demo_2.py
import mosaik
import mosaik.util

# Sim config

(continues on next page)
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SIM_CONFIG = {
'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',
by
'ExampleCtrl': {
'python': 'controller:Controller',
by
'Collector': {

'emd': '$ (p 10on)s collector.py 3% (addr)s'’,

by
I3
END = 10 # 10 seconds

# Create World
world = mosaik.World (SIM_CONFIG)
# End: Create World

# Start simulators

with world.group() :
examplesim = world.start ('ExampleSim', eid_prefix='Model ')
examplectrl = world.start ('ExampleCtrl')

collector = world.start ('Collector"')

# End: Start simulators

# Instantiate models

models = [examplesim.ExampleModel (init_val=i) for i in range (-2, 3, 2)]
agents = examplectrl.Agent.create(len (models))

monitor = collector.Monitor ()

# End: Instantiate models

# Connect entities

for model, agent in zip (models, agents):
world.connect (model, agent, ('val', 'val_in'))
world.connect (agent, model, 'delta', weak=True)

# End: Connect entities

# Connect to monitor
mosaik.util.connect_many_to_one (world, models, monitor, 'wval', 'delta')
mosaik.util.connect_many_to_one (world, agents, monitor, 'delta')

# Run simulation
world.run (until=END)

Congratulations, you have mastered the mosaik tutorial. The following sections provide a more detailed description of
everything you learned so far.
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5.5 Same-time loops

Important use cases for same-time loops can be the initialization of simulation and communication between controllers
or agents. As the scenario definition has to provide initialization values for cyclic data-flows and every cyclic data-flow
will lead to an incrementing simulation time, it may take some simulation steps until all simulation components are in a
stable state, especially, for simulations consisting of multiple physical systems. The communication between controllers
or agents usually takes place at a different time scale than the simulation of the technical systems. Thus, same-time loops
can be helpful to model this behavior in a realistic way.

To give an example of same-time loops in mosaik, the previously shown scenario is extended with a master controller,
which takes control over the other controllers. The communication between these two layers of controllers will take place
in the same step without incrementing the simulation time. The code of the previous scenario is used as a base and
extended as shown in the following.

5.5.1 Master controller

The master controller bases on the code of the controller of the previous scenario. The first small change for the master
controller is in the meta data dictionary, where new attribute names are defined. The ‘delta_in’ represent the delta values
of the controllers, which will be limited by the master controller. The results of this control function will be returned to
the controllers as ‘delta_out’.

META = {
'type': 'event-based',
'models': {
'"Agent': {
'public': True,
'params': [],
'attrs': ['delta_in', 'delta_out'],
}V
}I
}

__init__ is extended with self.cache for storing the inputs and self .t ime for storing the current simulation
time, which is initialized with O.

class Controller (mosaik_api_v3.Simulator) :
def _ init_ (self):
super () .__init__ (META)
self.agents = []
self.data = {}
self.cache = {}
self.time = 0

The step is changed, so that first the current time is updated in the self .t ime variable. Also the control function is
changed. The master controller gets the delta output of the other controllers as ‘delta_in’ and stores the last value of each
controller in the self . cache. This is needed, because the controllers are event-based and the current values are only
sent if the values changes. The control function of the master controller limits the sum of all deltastobe < 1 and > -1.
If these limits are exceeded the delta of all controllers will be overwritten by the master controller with 0 and sent to the
other controller as ‘delta_out’.

def step(self, time, inputs, max_advance) :
self.time = time
data = {}
for agent_eid, attrs in inputs.items() :
(continues on next page)
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values_dict = attrs.get ('delta_in', {})
for key, value in values_dict.items () :

self.cachelkey] = wvalue
if sum(self.cache.values()) < -1 or sum(self.cache.values()) > 1:
datalagent_eid] = {'delta_out': 0}

self.data = data

return None

Additionally, two small changes in the get_data method were done. First, the name was updated to ‘delta_out’ in the
check for the correct attribute name. Second, the current time, which was stored previously in the step, is added to the
output cache dictionary. This informs mosaik that the simulation should start or stay in a same-time loop if also output
data for ‘delta_out’ is provided.

def get_data(self, outputs):
data = {}
for agent_eid, attrs in outputs.items() :
for attr in attrs:

if attr != 'delta_out':
raise ValueError ('Unknown output attribute " "' % attr)
if agent_eid in self.data:
data['time'] = self.time
data.setdefault (agent_eid, {})[attr] = self.datalagent_eid] [attr]

return data

5.5.2 Controller

The controller has to be extended to handle the ‘delta_out’ from the master controller as input. If it receives an input value
for the attribute ‘delta’, it will not calculate a new delta value, but use the one from the master controller.

def step(self, time, inputs, max_advance) :
self.time = time
data = {}
for agent_eid, attrs in inputs.items():
delta_dict = attrs.get('delta', {})
if len(delta_dict) > 0:
datalagent_eid] = {'delta': list(delta_dict.values()) [0]}
continue

The same-time loop in this scenario will always be finished after the second iteration, because the master controller will
overwrite the deltas of the controller and will get back zeros as ‘delta_in’. Thus, it will produce no output in the second
iteration and the same-time loop will be finished.
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5.5.3 Scenario

This scenario is based on the previous scenario. In the following description only the changes are explained, but the full
code is shown. The updated controller and the new master controller are added to the sim config of the scenario.

# demo_3.py
import mosaik
import mosaik.util

# Sim config. and other parameters
SIM _CONFIG = {
'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',
}I
'ExampleCtrl': {
'python': 'controller_demo_3:Controller’',
}I
'ExampleMasterCtrl': {
'python': 'controller_master:Controller’',
}I
'Collector': {
'ecmd': ' collector.py ,
}I
}
END = 6 # 10 seconds

# Create World
world = mosaik.World (SIM_CONFIG)

The master controller is also started and initialized. The controllers get different ‘init_val’ values compared to the previous
scenario. Here, it is changed to (-2, 0, -2) to have the right timing to get into the same-time loop.

# Start simulators
with world.group() :
examplesim = world.start ('ExampleSim', eid_prefix='Model ")
examplectrl = world.start ('ExampleCtrl')
examplemasterctrl = world.start ('ExampleMasterCtrl')
collector = world.start('Collector')

# Instantiate models

models = [examplesim.ExampleModel (init_val=i) for i in (-2, 0, -2)]
agents = examplectrl.Agent.create (len (models))
master_agent = examplemasterctrl.Agent.create(l)

monitor = collector.Monitor ()

The ‘delta’ outputs of the controllers are connected to the new master controller and the ‘delta_out’ of the master controller
is connected to the respective controller. The weak=True argument defines, that the connection from the controllers to
the master controller will be the first to be executed by mosaik.

# Connect entities

for model, agent in zip (models, agents):
world.connect (model, agent, ('val', 'val_in'))
world.connect (agent, model, 'delta', weak=True)

for agent in agents:
world.connect (agent, master_agent[0], ('delta', 'delta_in'))
world.connect (master_agent[0], agent, ('delta_ out', 'delta'), weak=True)
(continues on next page)
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mosaik.util.connect_many_to_one (world, models, monitor, 'val', 'delta')
mosaik.util.connect_many_to_one (world, agents, monitor, 'delta')
world.connect (master_agent[0], monitor, 'delta_out'")

# Run simulation
world.run (until=END)

The printed output of the collector shows the states of the different simulators. The collector just shows the final result
of the same-time loop and not the steps during the loop. It can be seen that the ‘delta’ of ‘Agent_1" changes to -1 at time
step 2 and at time step 4 all ‘delta’ attributes are set to O by the master controller.

Collected data:
— ExampleCtrl-0.Agent_0:
- delta: {3: 0}
— ExampleCtrl-0.Agent_1:
- delta: {2: -1, 3: 0}
- ExampleCtrl-0.Agent_2:
- delta: {3: 0}
— ExampleMasterCtrl-0.Master_Agent_0:
- delta_out: {3: 0}
- ExampleSim-0.Model_0:
- delta: {O: 1, 1: 21, 2: 1, 3: 0, 4: 0, 5: 0}
- val: {O0: -1, 1: 0, 2: 2, 3: 2, 4: 2, 5: 2}
- ExampleSim-0.Model_1:
- delta: {O0: 1, 1: 1, 2: -1, 3: 0, 4: 0, 5: 0}
- val: {O0: 1, 1: 2, 2: 2, 3: 0, 4: 0, 5: 0}
- ExampleSim-0.Model_2:
- delta: {O0: 1, 1: 21, 2: 1, 3: 0, 4: 0, 5: 0}
- val: {O0: -1, 1: 0, 2: 2, 3: 2, 4: 2, 5: 2}

A visualization of the execution graph shows the data flows in the simulation. For the first two time steps, only the
controllers are executed, as they do not provide any output for ‘delta’. Thus, the master controller was not stepped and
the simulation was proceeded directly with the next simulation time step. At simulation time 2, the master controller is
stepped, but as the sum of delta values is not exceeding the limits no control action takes place. At simulation time 4, the
master controller is stepped again and this time sends back a value to the controllers to limit their ‘delta’ value. It can be
seen, that the controllers are stepped a second time within the same simulation time and send data again to the master
controller. After this second step of the master controller, it does not send an output again and the simulation proceeds
to simulation time 5, where the same-time loop occures again.

5.6 Set external events

This tutorial gives an example on how to set external events for integrating unforeseen interactions of an external system
in soft real-time simulation with rt_factor=1.0. A typical use case for this feature would be Human-in-the-Loop
simulations to support human interactions, e.g., control actions. In mosaik, such external events can be implemented via
the the asynchronous set_event method. These events will then be scheduled for the next simulation time step.

To give an example of external events in mosaik, a new scenario is created that includes a controller to set external events.
In addition to the controller, a graphical user interface (GUI) is implemented and started in a subprocess for external
control actions by the user.

The example code and additional requirements are shown in the following.
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5.6.1 Requirements

First of all, we need to install some additional requirements within the virtual environment (see installation guide for

setting up a virtual environment)
* pyzmq (https://zeromq.org/languages/python/)
e PyQt5 (https://pypi.org/project/PyQt5/)

[$ pip install pyzmg PyQt5

5.6.2 Set-event controller

Next, we need to create a new python module for the set-event controller, e.g., controller_set_event.py.

In the meta data dictionary of the set-event controller, we specify that this is an event-based simulator.

# controller_set_event.py

import sys
import zmg
import threading
import math

import mosaik_api_v3

META = {
'type': 'event-based',
'set_events': True,
'models’': {

'"Controller': {
'public': True,
'params': [],
'attrs': [],

}I

by

The set-event controller subscribes to external events from the GUI via a zeromq subscriber socket using the
publish-subscribe pattern. Herefore, a listener thread is created which receives external event messages from the GUL

More information about the listener thread can be found in the next section.

def _ init__ (self):
super () .__init__ (META)
self.data = {}
self.time = 0
self.eid = None
self.thread = None

self.initial_timestamp = 0
self.once = True
self.context = zmg.Context ()

class Controller (mosaik_api_v3.Simulator) :

# Subscribe to external events from the GUI
self.subscriber = self.context.socket (zmg.SUB)
self.subscriber.connect ("tcp://localhost:5563")

(continues on next page)
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self.subscriber.setsockopt (zmg.SUBSCRIBE, b"B")

# Listener THREAD
self.thread = listen_to_external_events (self)

def create(self, num, model) :
if num > 1 or self.eid is not None:
raise RuntimeError ('Can only create one instance of Controller.')

self.eid = 'Controller_set_event'
return [{'eid': self.eid, 'type': model}]

def finalize(self):
self.thread.join (0)
sys.exit ()

In order to set the event for the next time step, it is necessary to determine the current simulation time in wall clock time.
For this, we need to store the initial timestamp in step once for the first simulation step.

def step(self, time, inputs, max_advance) :
# Needed in listener thread to determine the current simulation time in wall.
—~clock time.
if self.once:
self.initial_timestamp = self.mosaik.world.env.now
self.once = False

self.time = time
print (f"In step at time {self.time}")

print (f"max_advance {max_advance}")

return None

5.6.3 Listener thread

The listener thread can be included in the same file as the set-event controller: controller_set_event.py.

The object of the controller class needs to be passed as a parameter tothe 1isten_to_external_events function,
which is called as a thread via the defined decorator @t hreaded. The listener thread listens to external event messages
from the GUI. Once a message arrives, the listener thread calls the set_event method to set an external event for the
next simulation step in mosaik.

def threaded (fn):
def wrapper (*args, **kwargs):
thread = threading.Thread(target=fn, args=args, kwargs=kwargs, daemon=True)
thread.start ()
return thread
return wrapper

@threaded
def listen_to_external events (controller):
while True:
try:
# Receive external event message from GUI
[address, contents] = controller.subscriber.recv_multipart (zmg.NOBLOCK)

(continues on next page)

5.6. Set external events 77




mosaik Documentation, Release 3.3.0

(continued from previous page)

print (f" [ {address/}] {contents/")

current_timestamp = controller.mosaik.world.env.now

real_time = math.ceil (current_timestamp - controller.initial_timestamp)
event_time = real_time + 1

print (f"Current simulation time: {real_time}")

if controller.time < event_time < controller.mosaik.world.until:
print (f"Set external Event at time {event_time}")
# Set external event in mosaik via asynchronous call
controller.mosaik.set_event (event_time)

except zmg.ZMQError as e:

if e.errno == zmqg.EAGAIN:
# state changed since poll event
pass

else:
raise

5.6.4 Graphical user interface

For the GUI, we create a new python module, e.g., gui_button.py.

The GUI is created with PyQt5 and provides a button to set external events in mosaik every time we click on it. To
enable the set-event controller to perform this control action, a zeromq publisher socket is used to send a message to the
controller’s subscriber that the button has been clicked.

MOSAIK 3.0 - External Events X

Click me to set an external event!

# gui_button.py

import sys

import zmg

from PyQt5 import QtWidgets

from PyQt5.QtWidgets import QApplication, QOMainWindow

class PushButtonWindow (QMainWindow) :
def _ init_ (self):

super (PushButtonWindow, self) .__init__ ()
self.button = None
self.context = zmg.Context ()

# For external events
self.publisher = self.context.socket (zmg.PUB)
self.publisher.bind("tcp://*:5563")

def button_clicked (self):
(continues on next page)
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self.publisher.send multipart ([b"B", b"Push button was clicked!"])

def create(self):
self.setWindowTitle ("MOSAIK 3.0 - External Events")

self.button = QtWidgets.QPushButton (self)
self.button.setText ("Click me to set an external event!")
self.button.clicked.connect (self.button_clicked)

# Set the central widget of the Window.
self.setCentralWidget (self.button)

def main() :
app = QApplication(sys.argv)
window = PushButtonWindow ()
window.create ()
window. show ()

sys.exit (app.exec_())
if name_ == "_ main_ ":
main ()

5.6.5 Scenario

Next, we need to create a new python script for the external events scenario, e.g., demo_4 . py.

For this scenario, the set-event controller is added to the SIM_CONF IG of the scenario.

# demo_4.py
import subprocess

import mosaik
import mosaik.util

SIM_CONFIG = {
'Controller': {
'python': 'controller_set_event:Controller',

by

END = 60 # 60 seconds

# Create World
world = mosaik.World (SIM_CONFIG)

The set-event controller is started and initialized. Here, an initial event is added to the set-event controller so that the con-
troller is executed at t ime=0 to set the initial timestamp. This is needed for the determination of the current simulation
time.

# Start simulators
controller = world.start ('Controller')

(continues on next page)
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# Instantiate models

external_event_controller = controller.Controller ()
world.set_initial_event (external_event_controller.sid)

The GUI is started in a subprocess and must be manually closed after the simulation is completed.

# Start GUI in a subprocess
proc = subprocess.Popen(['python', 'gui_button.py'])

In order to run the simulation scenario in soft real-time, the rt_factorissetto 1.0.

# Run simulation in real-time
world.run (until=END, rt_factor=1.0)

Finally, we can run the scenario script as follows:

[$ python demo_4.py

The printed output shows when the external events are triggered (button was clicked) and executed during simulation.

Starting "Controller" as "Controller-0"

WARNING: Controller-0 has no connections.

Starting simulation.

In step at time O

max_advance 60

Simulation too slow for real-time factor 1.0 - 9.655498433858156e-05s behind time.
[L'B'] b'Push button was clicked!'

Current simulation time: 11

Set external Event at time 12

In step at time 12

max_advance 60

Simulation too slow for real-time factor 1.0 - 0.000688756990712136s behind time.

[L'B'] b'Push button was clicked!'

Current simulation time: 16

Set external Event at time 17

In step at time 17

max_advance 60

Simulation too slow for real-time factor 1.0 - 0.0013458110042847693s behind time.
[L'B'] b'Push button was clicked!'

Current simulation time: 26

Set external Event at time 27

In step at time 27

max_advance 60

Simulation too slow for real-time factor 1.0 - 0.0013047059765085578s behind time.
[L'B'] b'Push button was clicked!'

Current simulation time: 29

Set external Event at time 30

In step at time 30

max_advance 60

Simulation too slow for real-time factor 1.0 - 0.0019755829707719386s behind time.
[L'B'] b'Push button was clicked!'

Current simulation time: 33

Set external Event at time 34

In step at time 34

max_advance 60

Simulation too slow for real-time factor 1.0 - 0.0011994789820164442s behind time.
Simulation finished successfully.
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Odysseus tutorial

5.7 Connecting mosaik and Odysseus

Odysseus is a framework for in-memory data stream management that is designed for online processing of big data. Large
volumes of data such as continuously occurring events or sensor data can be processed in real time. In combination with
mosaik Odysseus can be used to process, visualise and store the results of mosaik during a simulation.

In this first part of the tutorial we cover the two ways to connect mosaik and Odysseus, the second part is about how to
use Odysseus to process, visualize and store simulation data.

Note: Connecting mosaik and Odysseus works mosaik >= 3.0

Note: Connecting mosaik and Odysseus works only with mosaik >= 3.0

You can choose between two different solutions to connect mosaik and Odysseus. Both have their advantages and dis-
advantages and therefore, the right choice depends on your use case. We recommend to use the SimAPI version for
beginners.

No matter which connection we use, we first have to download Odysseus Server and Studio Client. For the first start of
Odysseus Studio the default user “System” and password “manager” have to be used, the tenant can be left empty.

5.7.1 Connecting via mosaik protocol handler

The easiest way to connect to mosaik is to use the mosaik protocol handler in Odysseus, which is available as installable
feature in Odysseus Studio. It uses the mosaik API through remote procedure calls (RPC) and offers a close coupling of
mosaik and Odysseus. With this, a blocked simulation in mosaik or a blocked processing in Odysseus will block the other
system as well. If this is a problem in your use case, you should look in the section Connecting via ZeroMQ.

First we have to install the mosaik feature from the incubcation site in odysseus, which can be found in the Odysseus
Wrapper Plugins.

After installing the feature we create a new Odysseus project and in the project a new Odysseus script file (more information
on Odysseus projects and script files can be found in this tutorial). To use mosaik as source we can use the mosaik operator
which contains a standard configuration of mandatory parameters. The script-code in the Odysseus query language PQL
looks like this:

#PARSER PQL

#METADATA TimeInterval

#QUERY

mosaikCon := MOSAIK ({SOURCE = 'mosaik', type='simapi'})

This is for the standard configuration. If you want to change something, for example to use another port, you need a more
detailed configuration:

#PARSER PQL
#METADATA TimeInterval

#QUERY

mosaikConl := ACCESS ({TRANSPORT = 'TCPServer',
PROTOCOL = 'mosaik',
SOURCE = 'mosaik',

(continues on next page)
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DATAHANDLER = 'KeyValueObject',
WRAPPER = 'GenericPush',
OPTIONS = [

['port', '5555'],
['mosaikPort', '5554'],
['byteorder', 'LITTLE_ENDIAN']

)

As we can see the protocol ‘mosaik’ is chosen. When the query is started, the mosaik protocol handler in Odysseus opens
a TCP server for receiving data from mosaik.

Before we can receive data, we have to adapt our mosaik scenario. Here we take the mosaik-demo as an example. The
Odysseus simulator is treated just like any other component in mosaik. It has to be added to the STM_CONF I G parameter.
For the connection to the simulator the connect command is used and the IP address and port of Odysseus have to be
specified:

sim_config = {
'Odysseus': {
'connect': '127.0.0.1:5554",

After that, we have to initialize the simulator and connect it to all components whose data we want to revceive in Odysseus.
For the mosaik-demo, we have to add the following lines of code to the scenario definition:

# Start simulators
odysseusModel = world.start ('Odysseus', step_size=60*15)

# Instantiate models
odysseus = odysseusModel.Odysseus.create (1)
ody = odysseus[0]

# Connect entities

connect_many_to_one (world, nodes, ody, 'P', 'Vm')
connect_many_to_one (world, houses, ody, 'P_out'")
connect_many_to_one (world, pvs, ody, 'P'")

Now we have set up everything to receive mosaiks data in Odysseus. To begin transfering data we have to start first the
query in Odysseus and then the simulation in mosaik.

For more information on how to use Odysseus visit part two.

5.7.2 Connecting via ZeroMQ

In contrast to the close coupling via mosaik protocol handler the coupling via ZeroMQ is more loose. Mosaik sends all
data as data stream with ZeroMQ and Odysseus can even be closed and restarted during the simulation without affecting
mosaik. This behaviour holds the risk of loosing data so it should only be used if this doesn’t cause problems.

First we have to install the following features for Odysseus from incubation site:

* Odysseus Wrapper Plugins / Zero MQ

¢ QOdysseus Wrapper Plugins / mosaik (only if you want to use the mosaik operator)
And from the update site:

* Odysseus Odysseus_core Plugins / Json Wrapper
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After installing the features we create a new Odysseus project and in the project a new Odysseus script file. The messages
sent by mosaik are formatted in JSON format and sent via ZeroMQ. So we have to choose the corresponding ZeroMQ
transport handler and JSON protocol handler:

#PARSER PQL
#METADATA TimeInterval

#QUERY

mosaikCon3 := ACCESS ({TRANSPORT = 'ZeroMQ',
PROTOCOL = 'JSON',
SOURCE = 'mosaik',
DATAHANDLER = 'KeyValueObject',
WRAPPER = 'GenericPush',
OPTIONS = [

['"host', '127.0.0.1'],

['readport', '5558'],

['writeport', '5559'],

['byteorder', 'LITTLE_ENDIAN']
1)

If you use the standard configurtion you can use the short version (feature “wrapper / mosaik” has to be installed):

#PARSER PQL

#METADATA TimeInterval

#QUERY

mosaikCon2 := MOSAIK({SOURCE = 'mosaik',6 type='zeromq'})

After setting up Odysseus we have to install the mosaik-zmq adapter in our mosaik virtualenv. It is available on GitLab
and PyPI. To install it we have to activate our mosaik virtualenv and execute (if there are errors during installation have
a look in the readme):

[pip install mosaik-zmg }

The mosaik-zmq adapter is treated in mosaik like any other component of the simulation. If we use the mosaik demo,
we have to add the new simulator to the STM_CONF IG parameter:

sim_config = {
'ZMQ':
'cmd': 'mosaik-zmg 0

by

Also we have to initialize the ZeroMQ simulator and connect it to other components:

# Start simulators
zmgModel = world.start ('ZMQ', step_size=15*60, duration=END)

# Instantiate models
zmg = zmgModel.Socket (host="tcp://*:', port=5558, socket_type='PUB')

# Connect entities

connect_many_to_one (world, nodes, zmg, 'P', 'Vm')
connect_many_to_one (world, houses, zmg, 'P_out')
connect_many_to_one (world, pvs, zmg, 'P'")

For more information on how to use Odysseus visit part two.
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5.8 Using Odysseus to process, visualize and store simulation data

This tutorial will give some examples on how you can use Odysseus to process, visualize and store the data from mosaik.
More information about connecting mosaik and Odysseus can be found in the first part of the tutorial and more about
Odysseus in general can be found in its documentation. If you have no experience with Odysseus you should first visit the
tutorials in its documentation. Simple query processing and selection, projection and map should explain the basics.

5.8.1 Processing

Mosaik sends data in JSON format and so the key-value-object has to be used as datatype for receiving in Odysseus. But
most operators in Odysseus are based on relational tuples with a fixed schema, so it can be useful to transform arriving
key-value objects to relational tuples. For this the totuple operator can be used. It creates relational tuples with the given
attributes and omitts all data, which is not included in the schema:

tuples = TOTUPLE ({

SCHEMA = [
'odysseus_0.Vm.PyPower-0.0-tr_sec', 'Double'],
'odysseus_0.Vm.PyPower-0.0-node_bl', 'Double'],
'odysseus_0.Vm.PyPower-0.0-node_b2', 'Double'],
'odysseus_0.Vm.PyPower—-0.0-node_b3', 'Double']
'odysseus_0.Vm.PyPower-0.0-node_b4', 'Double']

'timestamp', 'STARTTIMESTAMP']

’
4

[
[
[
[
[
[

1,
TYPE = 'mosaik'},
mosaikCon)

For better handling we can rename the attributes with the rename operator:

renamedTuples = RENAME ({aliases =
['tr_sec_Vm', 'nodel_Vm', 'node2_Vm', 'node3_Vm', 'noded4_Vm',
—'timestamp']
}, tuples)

We can also add computations to the data with a map operator. The expressions parameter contains first the computation
and second the new name for every attribute. In this example the deviation of voltage to the nominal voltage of 230 V is
calculated (more information about the offered functions can be found here):

voltageDeviation = MAP ({EXPRESSIONS = [
['abs (230 - tr_sec_Vm)', 'dev_tr_sec_Vm'],
['abs (230 - Nodel _Vm)', 'dev_Nodel_Vvm'],
['abs (230 - Node2_Vm)', 'dev_Node2_Vm'],
['abs (230 - Node3_Vm)', 'dev_Node3_Vm'],
) 14

]

['abs (230 - Node4_Vm
1}, renamedTuples)

'dev_Node4_Vm']

By using the aggregate operator we are able to calculate e.g. the average values. We have to add an timewindow operator
first to have the right timestamps for aggregating.

windowedTuples = TIMEWINDOW ({SIZE = [5, 'MINUTES']}, voltageDeviation)
aggregatedTuples = AGGREGATE ({
AGGREGATIONS = [
['AVG', 'dev_tr_sec_Vm', 'AVG_dev_tr_sec_P'],
['AVG', 'dev_Nodel_ Vm', 'AVG_dev_Nodel_P'],
['"AVG', 'dev_Node2_Vm', 'AVG_dev_Node2_P'],
['AVG', 'dev_Node3_Vm', 'AVG_dev_Node3_P'],
(continues on next page)
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['"AVG', 'dev_Noded4_Vm', 'AVG_dev_Noded_P']
1},

windowedTuples)

5.8.2 Visualisation

To visualize data in Odysseus dashboards can be used, which can contain different graphs. For the data stream shown in
the section above an exemplary dashboard could look like the following picture:

voltage absolute voltage deviation
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simulation time o
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— odysseus_0.vm.PyPower-0.0-node_dl (0) simulation time
odysseus_0.Vm.PyPower-0.0-node_d2 (0) dev_tr_sec_Vm (0) —dev_Nodel_Vm (0)
odysseus_0.Vm.PyPower-0.0-node_d3 (0) dev_Node2_Vm (0)  dev_Node3_Vm (0)
— odysseus_0.Vm,PyPower-0.0-node_d4 (0) — dev_Noded_Vm (0)

More information about dashboards in Odysseus can be found in the documentation.

5.8.3 Storing

If we want to save the results of our Odysseus query, we can use the sender operator to export it, e.g. to a csv file:

send = SENDER ({
SINK='writeCSV',
transport='File',
wrapper='GenericPush',
protocol='CSV',
dataHandler="Tuple',
options=|[
['filename', '$ {WORKSPACEPROJECT }\output2.csv']
1}, aggregatedTuples)

Odysseus also offers adapters to store the processed data to different databases (e.g. mysql, postgres and oracle). More
details can be found here.

Java API tutorial
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5.9 Integrating a Model in Java

What do we do if we want to connect a simulator to mosaik which ist written in Java? In this tutorial we will describe how
to create a simple model in Java and integrate it into mosaik using the mosaik-Java high level API. We will do this with
the help of our simple model from the Python tutorial, i. e. we will try to replicate the first part of the Pyrhon tutorial as
close as possible.

5.9.1 Getting the Java API

You can add the java package via maven or gradle, following the instructions at the mosaik-java-API package repository.

If you want to compile the jar yourself, you have to get the sources of the mosaik-java-API for Java which is provided on
Gitlab. Clone it and put it in the development environment of your choice.

5.9.2 Creating the model

Next we create a Java class for our model. Our example model has exact the same behaviour as our simple model in the
Python tutorial. To distinguish it from the Python-model we call it JModel. The only difference to the Python-model is
that in Java we need two constructors (with and without init value) and getter and setter methods to access the variables
val and delta.

class JModel {
private float val;
private float delta = 1;

public JModel () {
this.val = 0;
t

public JModel (float initVal) {
this.val = initval;

}

public float get_val() {
return this.val;

}

public float get_delta() {
return this.delta;
}

public void set_delta(float delta) {
this.delta = delta;
}

public void step() {
this.val += this.delta;
}
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5.9.3 Creating the simulator

A simulator provides the functionality that is necessary to manages instances of our model and to execute the models.
We need a method addModel to create instances of our model and an ArrayList models to store them. The step method
executes a simulation for each model instance. To access the values and deltas we need getter and setter methods. In our
example the class implementing these functionalities is called JSimulator.

class JSimulator {
private final ArraylList<JModel> models;

public JSimulator ()
this.models

{

public void add_model (Number init_val) {
JModel model;
if (init_val == null) {

new JModel () ;

model
} else {
model

}
this.models.add (model) ;

public void step() {
for (int i = 0;
JModel model

model.step () ;

public float get_val (int idx) {
JModel model this.models.get (idx) ;

return model.get_val();

public float get_delta (int idx) {
JModel model this.models.get (idx) ;

return model.get_delta();

public void set_delta(int idx, float delta)
JModel model this.models.get (idx) ;

model.set_delta(delta);

i < this.models.size();

new ArrayList<JModel> () ;

new JModel (init_val.floatValue());

Al

this.models.get (i) ;

{
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5.9.4 Implementing the mosaik API

Finally we need to implement the mosaik-API methods. In our example this is done in a class called JExampleSim. This
class has to extent the abstract class Simulator from mosaik-java-api which is the Java-equivalent to the Simulator class
in Python. The class Simulator provides the four mosaik-API-calls init (), create (), step (), and getData ()
which we have to implement. For a more detailed explanation of the API-calls see the API-documentation.

But first we have to put together the meta-data containing information about models, attributes, and parameters of our
simulator. ‘models’ are all models our simulator provides. In our case this is only JModel. ‘public’: true tells mosaik that
it is allowed to create models of this class. ‘params’ are parameter that are passed during initialisation, in our case this is
init_val. “attrs’ is a list of values that can be exchanged.

private static final JSONObject meta = (JSONObject) JSONValue.parse (("{"
+ " 'api_version': " + Simulator.API_VERSION + ", "
+ " 'models': {"
+ " 'JModel': {"
+ " 'public': true,"
+ " 'params': ['init_wval'],"
+ " 'attrs': ['val', 'delta']"
+ " O
+ " B @
+ "}").replace("'", "\""));

First method is init() that returns the meta data. In addition it is possible to pass arguments for initialization. In our case
there is eid_prefix which will be used to name instances of the models:

public Map<String, Object> init (String sid, Map<String, Object> simParams) {
if (simParams.containsKey ("eid_prefix")) {
this.eid _prefix = simParams.get ("eid_prefix").toString();
}

return JExampleSim.meta;

create() creates new instances of the model JModel by calling the add_model-method of JSimulator. 1t also assigns ID
(eid) to the models, so that it is able to keep track of them. It has to return a list with the name (eid) and type of the
models. You can find more details about the return object in the API-documentation.

@Override
public List<Map<String, Object>> create(int num, String model,
Map<String, Object> modelParams) {
JSONArray entities = new JSONArray();
for (int i = 0; i < num; i++) |
String eid = this.eid_prefix + (this.idCounter + 1i);
if (modelParams.containsKey ("init_val")) {
Number init_val = (Number) modelParams.get ("init_wval");
this.simulator.add_model (init_val);
}
JSONObject entity = new JSONObject () ;
entity.put ("eid", eid);
entity.put ("type", model);
entity.put ("rel", new JSONArray());
entities.add(entity);
this.entities.put (eid, this.idCounter + 1i);
}
this.idCounter += num;
return entities;
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step() tells the simulator to perform a simulation step. It passes the fime, the current simulation time, and inputs, a JSON
data object with input data from preceding simulators. The structure of inputs is explained in the API-documentation.
If there are new delta-values in inputs they are set in the appropriate model instance. Finally it calls the simulator’s
step()-method which, on its part, calls the step()-methods of the individual model-instances.

public long step(long time, Map<String, Object> inputs) {
//go through entities in inputs

for (Map.Entry<String, Object> entity : inputs.entrySet ()) {
//get attrs from entity
Map<String, Object> attrs = (Map<String, Object>) entity.getValue();
//go through attrs of the entity
for (Map.Entry<String, Object> attr : attrs.entrySet()) {

//check if there is a new delta
String attrName = attr.getKey();
if (attrName.equals("delta")) {
//sum up deltas from different sources

Object[] values = ((Map<String, Object>) attr.getValue()).
—values () .toArray () ;
float value = 0;
for (int i = 0; i < values.length; i++) {
value += ((Number) wvalues|[i]).floatValue();

}

//set delta

String eid = entity.getKey();

int idx = this.entities.get (eid);
this.simulator.set_delta (idx, value);

s
//call step-method
this.simulator.step();

return time + this.stepSize;

getData() gets the simulator’s output data from the last simulation step. It passes outputs, a JSON data object that describes
which parameters are requested. getData() goes through outputs, retrieves the requested values from the appropriate
instances of JModel and puts it in dafa. The structure of outputs and data is explained in the API-documentation.

public Map<String, Object> getData (Map<String, List<String>> outputs) {
Map<String, Object> data = new HashMap<String, Object>();
//*outputs* lists the models and the output values that are requested
//go through entities in outputs
for (Map.Entry<String, List<String>> entity : outputs.entrySet()) {
String eid = entity.getKey () ;
List<String> attrs = entity.getValue();
HashMap<String, Object> values = new HashMap<String, Object>();
int idx = this.entities.get (eid);
//go through attrs of the entity
for (String attr : attrs) {
if (attr.equals("val")) {
values.put (attr, this.simulator.get_val (idx));
}
else if (attr.equals("delta")) {
values.put (attr, this.simulator.get_delta (idx));

}

data.put (eid, wvalues);
(continues on next page)
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(continued from previous page)

}

return data;

5.9.5 Connecting the simulator to mosaik
We use the same scenario as in our Python example demol. The only thing we have to change is the way we connect our
simulator to mosaik. There are two ways to do this:

e cmd: mosaik calls the Java API by executing the command given in cmd. Mosaik starts the Java-API in a new
process and connects it to mosaik. This works only if your simulator runs on the same machine as mosaik.

¢ connect: mosaik connects to the Java-API which runs as a TCP server. This works also if mosaik and the simulator
are running on different machines.

For more details about how to connect simulators to mosaik see the section about the Sim Manager in the
mosaik-documentation.

Connecting the simulator using cmd

We have to give mosaik the command how to start our Java simulator. This is done in SIM_CONFIG. The marked lines
show the differences to our Python simulator.

# Sim config. and other parameters
SIM_CONFIG = {
'JExampleSim': |
'cmd': 'java —-cp JExampleSim.jar de.offis.mosaik.api.JExampleSim e
}I
'Collector': {
'cmd': 'python collector.py 0
}I
}
END = 10 * 60 # 10 minutes

The placeholder %(addr)s is later replaced with IP address and port by mosaik. If we now execute demo_1.py we get the
same oufput as in our Python-example.

Note: The command how to start the Java simulator may differ depending on your operating system. If the command is
complex, e. g. if it contains several libraries, it is usually better to put it in a script and than call the script in cmd.

Connecting the simulator using connect

In this case the Java API acts as TCP server and listens at the given address and port. Let’s say the simulator runs on
a computer with the IP-address 1.2.3.4. We can now choose a port that is not assigned by default. In our example we
choose port 5678. Make sure that [P-address and port is accessible from the computer that hosts mosaik (firewalls etc.).

Note: Of course you can run mosaik and your simulator on the same machine by using 127.0.0.1: 5678 (localhost).
You may want to do this for testing and experimenting. Apart from that the connection with cmd (see above) is usually
the better alternative because you don’t have to start the Java part separately.
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‘We have to tell mosaik how to connect to the simulator. This is done in S/M_CONFIG in our scenario (demol):

# Sim config. and other parameters
SIM_CONFIG = {
'JExampleSim': {
'connect': '1.2.3.4:5678",
}I
'Collector': {
'emd': 'python collector.py v
}I
}
END = 10 * 60 # 10 minutes

The marked lines show the differences to our Python simulator. Our simulator is now called JExampleSim and we need
to give the simulator’s address and port after the connect key word.

Now we start JExampleSim. To tell the mosaik-Java-API to run as TCP-server is done by starting it with “server” as
second argument. The first command line argument is IP-address and port. The command line in our example looks like
this:

[java —cp JExampleSim.jar de.offis.mosaik.api.JExampleSim 1.2.3.4:5678 server

If we now execute demo_1.py we get the same oufput as in our Python-example.

Note: You can find the source code used in this tutorial in the mosaik-source-files in the folder docs/tutorial/
code.

Java Generics API tutorial

5.10 Integrating a Model in Java with Generics / Annotations API

Additionally to the basic mosaik Java API, another API based on the basic one can be used, called
mosaik-java-api-generics, that contains some quality of life changes, for example automatic meta-model generation based
on your model, automatic model instantiation, input parsing via generics and automatic gathering of data for mosaik.

Note: When to use basic Java API and when to use this API? If you want to use the flexibility from Python, for example
using all inputs. If you want to have a more type strict Java-like experience, use this API instead.

This tutorial is also based on the Python tutorial Python tutorial for the simple model and shows how to use the most
features of this APL

5.10.1 Getting the Java API

You can add the java package via maven or gradle, following the instructions at the mosaik-java-generics-API package
repository.

If you want to compile the jar yourself, you have to get the sources of the mosaik-java-generics-API for Java which is
provided on Gitlab. Clone it and put it in