

Welcome to mosaik’s documentation!

Mosaik is a flexible Smart Grid co-simulation framework.

Mosaik allows you to reuse and combine existing simulation models and simulators to
create large-scale Smart Grid scenarios – and by large-scale we mean thousands of
simulated entities distributed over multiple simulator processes. These scenarios can
then serve as a test bed for various types of control strategies (e.g., multi-agent
systems (MAS) or centralized control).

Here, we provide the documentation about mosaik.

Contents:

	Quickstart

	Installation
	Linux

	OS X

	Windows

	Overview
	What’s mosaik supposed to do?

	Mosaik’s main components

	mosaik ecosystem

	Tutorials
	Integrating a simulation model into the mosaik ecosystem

	Creating and running simple simulation scenarios

	Adding a control mechanism to a scenario

	Integrating a control mechanism

	Same-time loops

	Set external events

	Connecting mosaik and Odysseus

	Using Odysseus to process, visualize and store simulation data

	Integrating a Model in Java

	Integrating a Model in Java with Generics / Annotations API

	Use mosaik with Jupyter Notebooks

	Plotting graphs

	Using Apache Superset to visualize simulation data

	The mosaik API
	How mosaik communicates with a simulator

	The low-level API

	The high-level API

	High-level APIs in other languages

	Scenario definition
	The setup

	Starting simulators

	Instantiating simulation models

	Setting initial events

	Connecting entities

	Running the simulation

	How to achieve cyclic data-flows

	How to filter entity sets

	How to create user-defined connection rules

	How to retrieve static data from entities

	How to access topology and data-flow information

	How to destroy a world

	How to do real-time simulations

	How to call extra methods of a simulator

	The simulator manager

	Scheduling and simulation execution
	Time paradigms

	Advancing through time

	Synchronization and data-flows

	Cyclic data-flows

	Stepping and simulation duration

	Upgrading from mosaik 2 to 3
	Component’s type

	Time resolution

	Max_advance time

	Sticking with mosaik 2

	FAQ
	General questions

	Coupling models with mosaik

	The mosaik demo

	Developer’s Documentation
	Discussion of design decisions

	Logo and corporate identity

	API Reference
	mosaik — The end-user API

	mosaik.exceptions — mosaik specific error types

	mosaik.scenario — Classes related to the scenario creation

	mosaik.scheduler — Coordinate and execute simulators

	mosaik.simmanager — Management of external processes

	mosaik.util — Utility classes and functions

	mosaik.basic_simulators — Basic simulators

	About mosaik
	Acknowledgments

	The history of mosaik

	Privacy Policies

	Legals

	Datenschutz

	Impressum

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

This guide assumes that you are somewhat proficient with Python and know what
pip and virtualenv is. Else, you should follow the detailed
instructions.

Mosaik runs on Linux, OS X and Windows. It requires Python 3.8 [http://python.org] or higher. To install everything, you need the package
manager Pip [http://pip.readthedocs.org/en/latest/installing.html] which is
bundled with Python 3.8 and above.

We also strongly recommend you to install everything into a virtualenv [http://www.virtualenv.org/en/latest/].

You can then install mosaik with pip:

$ pip install mosaik

This provides you with the mosaik framework. There is also a simple demo
scenario which may help you to get started. Please refer to our detailed
instructions for installation.

For more information about avaiable components and example scenarios visit the
mosaik ecosystem page.

Installation

This guide contains detailed installation instructions for Linux,
OS X and Windows.

It covers the installation of the mosaik framework followed by the instructions
to install the demo.

Linux

This guide is based on (K)ubuntu 18.04 Bionic Beaver, 64bit.

Mosaik and the demo scenario require Python [https://www.python.org/] >= 3.8, which should be fine
for any recent linux distribution. Note that we test mosaik only for the most
(typically three) recent python versions though.

	We also need pip [https://pip.readthedocs.org/], a package manager for Python packages, and
virtualenv [https://virtualenv.readthedocs.org/], which can create isolated Python environments for different
projects:

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py
$ sudo pip install -U virtualenv

	Now we need to create a virtual environment for mosaik and its dependencies.
The common location for venvs is under ~/.virtualenvs/:

$ virtualenv -p /usr/bin/python3 ~/.virtualenvs/mosaik
$ source ~/.virtualenvs/mosaik/bin/activate

Your command line prompt should now start with “(mosaik)” and roughly look
like this: (mosaik)user@kubuntu:~$.

	The final step is to install mosaik:

(mosaik)$ pip install mosaik

Mosaik should now be installed successfully.

Running the demo

Mosaik alone is not very useful (because it needs other simulators to perform
a simulation), so we also provide a small demo scenario and some simple
simulators as well as a mosaik binding for PYPOWER [https://github.com/rwl/PYPOWER].

	PYPOWER requires NumPy and SciPy. We also need to install the revision
control tool git. You can use the packages shipped
with Ubuntu. We use apt-get to install NumPy, SciPy, and h5py as
well as git. By default, venvs are isolated from globally installed
packages. To make them visible, we also have to recreate the venv and set
the --system-site-packages flag:

$ sudo apt-get install git python3-numpy python3-scipy python3-h5py
$ rm -rf ~/.virtualenvs/mosaik
$ virtualenv -p /usr/bin/python3 --system-site-packages ~/.virtualenvs/mosaik
$ source ~/.virtualenvs/mosaik/bin/activate

	You can now clone the mosaik-demo repository [https://gitlab.com/mosaik/mosaik-demo] into a folder where you
store all your code and repositories (we’ll use ~/Code/):

(mosaik)$ mkdir ~/Code
(mosaik)$ git clone https://gitlab.com/mosaik/mosaik-demo.git ~/Code/mosaik-demo

	Now we only need to install all requirements (mosaik and the simulators) and
can finally run the demo:

(mosaik)$ cd ~/Code/mosaik-demo/
(mosaik)$ pip install -r requirements.txt
(mosaik)$ python demo.py

If no errors occur, the last command will start the demo. The web visualisation
shows the demo in your browser: http://localhost:8000. You can click the nodes of the
topology graph to show a time series of their values. You can also drag them
around to rearrange them.

You can cancel the simulation by pressing Ctrl-C.

OS X

This guide is based on OS X 10.11 El Capitan.

	Mosaik and the demo scenario require Python [https://www.python.org/] >= 3.8. OS X only ships with
some outdated versions of Python, so we need to install a recent Python 2
and 3 first. The recommended way [http://docs.python-guide.org/en/latest/starting/install/osx/] of doing this is with the packet manager homebrew [http://brew.sh/].
To install homebrew, we need to open a Terminal and execute the following command:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

The homebrew installer asks you to install the command line developer
tools for “xcode-select”. Install them. When you are done, go back to the
terminal and press Enter so that the installer continues.

If this doesn’t work for you, you’ll find more detailed instructions in the
homebrew wiki [https://github.com/Homebrew/homebrew/wiki/Installation].

Once the installation is successful, we can install python and
python3:

$ brew install python python3

This will also install the Python package manager pip [https://pip.readthedocs.org/].

	Next, we need virtualenv [https://virtualenv.readthedocs.org/] which can create isolated Python
environments for different projects:

$ pip install -U virtualenv

	Now we need to create a virtual environment for mosaik and its dependencies.
The common location for venvs is under ~/.virtualenvs/:

$ virtualenv -p /usr/local/bin/python3 ~/.virtualenvs/mosaik
$ source ~/.virtualenvs/mosaik/bin/activate

Your command line prompt should now start with “(mosaik)” and roughly look
like this: (mosaik)user@macbook:~$.

	The final step is to install mosaik:

(mosaik)$ pip install mosaik

Mosaik should now be installed successfully.

Running the demo

Mosaik alone is not very useful (because it needs other simulators to perform
a simulation), so we also provide a small demo scenario and some simple
simulators as well as a mosaik binding for PYPOWER [https://github.com/rwl/PYPOWER].

	To clone the demo repository, we need to install git. In order to
compile NumPy, SciPy and h5py (which are required by PYPOWER and the
database adapter) we also need to install gfortran which is included in gcc. You should deactivate
the venv for this:

(mosaik)$ deactivate
$ brew install git gcc hdf5
$ source ~/.virtualenvs/mosaik/bin/activate

	For NumPy and SciPy we build binary wheel [https://wheel.readthedocs.org/] packages that we can later
reuse without re-compiling everything. We’ll store these wheels in
~/wheelhouse/:

(mosaik)$ pip install wheel
(mosaik)$ pip wheel numpy
(mosaik)$ pip install wheelhouse/numpy-1.10.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
(mosaik)$ pip wheel scipy
(mosaik)$ pip install wheelhouse/scipy-0.16.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
(mosaik)$ pip wheel h5py
(mosaik)$ pip install wheelhouse/h5py-2.5.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl

Note

The file names of the wheels (*.whl-files) may change when version-numbers
change. Please check the output of pip install or the directory ~/wheelhouse/
for the exact file names.

	You can now clone the mosaik-demo repository [https://gitlab.com/mosaik/mosaik-demo] into a folder where you
store all your code and repositories (we’ll use ~/Code/):

(mosaik)$ mkdir ~/Code
(mosaik)$ git clone https://gitlab.com/mosaik/mosaik-demo.git ~/Code/mosaik-demo

	Now we only need to install all requirements (mosaik and the simulators) and
can finally run the demo:

(mosaik)$ cd ~/Code/mosaik-demo/
(mosaik)$ pip install -r requirements.txt
(mosaik)$ python demo.py

If no errors occur, the last command will start the demo. The web visualisation
shows the demo in your browser: http://localhost:8000. You can click the nodes of the
topology graph to show a time series of their values. You can also drag them
around to rearrange them.

You can cancel the simulation by pressing Ctrl-C.

Windows

This guide is based on Windows 10, 64bit.

	Mosaik and the demo scenario require Python [https://www.python.org/] >= 3.8. By default, it will
offer you a 32bit installer. You can find the Windows x86-64 MSI installer
here [https://www.python.org/downloads/release/python-382/].

	When the download finished, double-click the installer.

	Select Install for all users and click Next >.

	The default installation path is okay. Click Next >.

	In the Customize Python page, click on the Python node and select
Entire feature will be installed on local hard drive. Make sure that
Add python.exe to Path is enabled. Click Next >.

	When Windows asks you to allow the installation, allow the installation.
Wait. Click Finish.

This also install the Python package manager pip [https://pip.readthedocs.org/].

	We also need virtualenv [https://virtualenv.readthedocs.org/] which can create isolated Python environments
for different projects.

Open a terminal window: Press the Windows key (or click on the start
menu) and enter cmd. Press Enter. Your terminal prompt should
look like C:\Users\yourname>. Execute the following command to install
virtualenv:

C:\Users\yourname> pip install -U virtualenv

Note

If your Windows account type is Standard User, you need to open the
terminal with administarator privileges (right-click the Terminal icon,
then open as Administrator). Make then sure that you are in your user
directory:

C:\Windows\system32> cd C:\Users\yourname
C:\Users\yourname>

	Now we need to create a virtual environment for mosaik and its dependencies.
The common location for venvs is under Envs/ in your users
directory:

C:\Users\yourname> virtualenv -p path\to\python.exe Envs\mosaik

To activate the virtual environment use the following command:

C:\Users\yourname> Envs\mosaik\Scripts\activate

This command should also function when using the powershell, however the execution policy might need to be changed.

Your command line prompt should now start with “(mosaik)” and roughly look
like this: (mosaik) C:\Users\yourname>.

	The final step is to install mosaik:

(mosaik) C:\Users\yourname> pip install mosaik

Mosaik should now be installed successfully.

Running the demo

Mosaik alone is not very useful (because it needs other simulators to perform
a simulation), so we also provide a small demo scenario and some simple
simulators as well as a mosaik binding for PYPOWER [https://github.com/rwl/PYPOWER].

	Download and install git [https://git-scm.com/downloads].

Restart the command prompt (as Admin if necessary and make sure you are
in the right directory again) and activate the virtualenv again:

C:\Users\yourname> Envs\mosaik\Scripts\activate

	Clone the demo repository:

(mosaik)C:\Users\yourname> git clone https://gitlab.com/mosaik/mosaik-demo.git

	Now we only need to install all requirements (mosaik and the simulators) and
can finally run the demo:

(mosaik)C:\Users\yourname> cd mosaik-demo
(mosaik)C:\Users\yourname\mosaik-demo> pip install -r requirements.txt
(mosaik)C:\Users\yourname\mosaik-demo> python demo.py

The web visualisation shows the demo in your browser: http://localhost:8000.
You can click the nodes of the topology graph to show a timeline of their values.
You can also drag them around to rearrange them.

You can cancel the simulation by pressing Ctrl-C. More exceptions
may be raised. No problem. :-)

Overview

This section describes how mosaik works without going into too much detail.
After reading this, you should have a general understanding of what mosaik does
and how to proceed in order to implement the mosaik API or to create
a simulation scenario.

What’s mosaik supposed to do?

Mosaik’s main goal is to use existing simulators in
a common context in order to perform a coordinated simulation of a given (Smart
Grid) scenario.

That means that all simulators (or other tools and hardware-in-the-loop)
involved in a simulation usually run in their own process. Mosaik just tries to synchronize these processes and manages the exchange
of data between them.

To allow this, mosaik

	provides an API for simulators to communicate with mosaik,

	implements handlers for different kinds of simulator processes,

	allows the modelling of simulation scenarios involving the different
simulators, and

	schedules the step-wise execution of the different simulators and manages
the exchange of data (data-flows) between them.

Although mosaik is written in Python 3, its simulator API completely language
agnostic. It doesn’t matter if your simulator is written in Python 2, Java,
C, matlab or anything else.

A simple example

[image: mosaik]We have simulators for households (blue icon) and for photovoltaics (green).
We’re also gonna use a load flow analysis tool (grey), and a monitoring and
analysis tool (yellow).

First, we have to implement the mosaik API for each of these “simulators”. When
we are done with this, we can create a scenario where we connect the households
to nodes in the power grid. Some of the households will also get a PV module.
The monitoring / analysis tool will be connected to the power grid’s
transformer node. When we connect all these entities, we also
tell mosaik about the data-flows between them (e.g., active power feed-in from
the PV modules to a grid node).

When we finally start the simulation, mosaik requests the simulators to perform
simulation steps and exchanges data between them according to the data-flows
described in the scenario. For our simple example, that would roughly look like
this:

	The household and PV simulator perform a simulation step for an interval
[0, t[.

	Mosaik gets the values for, e.g., P and Q (active and reactive power)
for every household and every PV module.

	Mosaik sets the values P and Q for every node of the power grid based on
the data it collected in step 2. The load flow simulator performs
a simulation step for [0, t[based on these inputs.

	Mosaik collects data from the load flow simulator, sends it to the
monitoring tool and lets it also perform a simulation step for [0, t[.

	Now the whole process is repeated for [t, t+i[and so forth until the
simulation ends.

In this example, all simulators had the same step size t, but this is not
necessary. Every simulator can have its one step size (which may even vary
during the simulation). It is also possible that a simulator (e.g., a control
strategy) can set input values (e.g., a schedule) to another simulator (e.g.,
for “intelligent” consumers).

Mosaik’s main components

Mosaik consists of four main components that implement the different aspects of
a co-simulation framework:

	The mosaik Sim API defines the communication protocol between
simulators and mosaik.

Mosaik uses plain network sockets and JSON encoded messages to communicate
with the simulators. We call this the low-level API. For some programming
languages there also exists a high-level API that implements everything
networking related and offers an abstract base class. You then only have to
write a subclass and implement a few methods.

Read more …

	The Scenario API provides a simple API that allows you to create
your simulation scenarios in pure Python [https://python.org] (yes, no
graphical modelling!).

The scenario API allows you to start simulators and instantiate models from
them. This will give you entity sets (sets of entities).
You can then connect the entities with each other in order to establish
data-flows between the simulators.

Mosaik allows you both, connecting one entity at a time as well as
connecting whole entity sets with each other.

Read more …

	The Simulator Manager (or shorter, SimManager) is responsible for
handling the simulator processes and communicating with them.

It is able to a) start new simulator processes, b) connect to already
running process instances, and c) import a simulator module and execute
it in-process if it’s written in Python 3.

The in-process execution has some benefits: it reduces the amount of memory
required (because less processes need to be started) and it avoids the
overhead of (de)serializing and sending messages over the network.

External processes, however, can be executed in parallel which is not
possible with in-process simulators.

Read more …

	Mosaik’s Scheduler uses the event-discrete simulation approach for the coordinated simulation of
a scenario.

Mosaik supports both time-discrete and event-discrete simulations as well
as a combination of both paradigms.

Mosaik is able to handle simulators with different step sizes. A simulator
may even vary its step size during the simulation.

Mosaik tracks the dependencies between the simulators and only
lets them perform a simulation step if necessary (e.g., because its data is
needed by another simulator). It is also able to let multiple simulators
perform their simulation step in parallel if they don’t depend on each
other’s data.

Read more …

mosaik ecosystem

Mosaik as a co-simulation tool organizes the data exchange between simulators
and coordinates the execution of the connected simulaters. This part is called
[image: mosaik] mosaik-core and contains mosaik itself and APIs for multiple
programming languages.

[image: mosaik is a co-simulation library. The components and tools form the mosaik ecosystem.]
Mosaik is a co-simulation library. The components and tools
form the mosaik ecosystem.

Mosaik-core without any connected simulators doesn’t do much. This is why we
provide some simple and free simulators so that it is possible to start with
a working Smart-Grid simulation. These simulators belong to a part of mosaik’s ecosystem called
[image: mosaik] mosaik-components. More detailed documentation for some components can be found in the
[image: mosaik] component documentation.

To see how these components can be coupled to simulations, also some example scenarios are
provided in [image: mosaik] mosaik-examples.

Mosaik is developed following the “lean and mean” principle. That means that we
try to keep the software as simple as possible in order to keep it efficient
and easy to maintain. In order to make it easier to set up and run experiments with
mosaik we provide some tools that help building scenarios, connecting
simulators or to visualize and analyze the simulation results. These tools are
located in the [image: mosaik] mosaik-tools.

For testing simulators or scenarios, mosaik provides some [image: mosaik] basic simulators,
which allow to specify specific data to be sent.

There are also some implementations done by external users of mosaik. We give an overview
of the [image: mosaik] external components and [image: mosaik] external scenarios we know.

[image: mosaik] mosaik-core

The root folder [https://gitlab.com/mosaik] contains mosaik itself and the high-level API implementations are
provided in the API folder [https://gitlab.com/mosaik/api].

	mosaik [https://gitlab.com/mosaik/mosaik]

	API for Python [https://gitlab.com/mosaik/mosaik-api-python]

	API for Java [https://gitlab.com/mosaik/mosaik-api-java]

	generics for Java API [https://gitlab.com/mosaik/api/mosaik-api-java-generics]

	Java tutorial

	API for Matlab [https://gitlab.com/mosaik/matlab-mosaik-toolbox]

	API for Matlab via Java [https://gitlab.com/mosaik/api/mosaik-api-matlab-over-java]

	API for C# [https://gitlab.com/mosaik/mosaik-api-c-sharp]

[image: mosaik] mosaik-components

This lists the mosaik components that are available on pypi. There are always component in work that are not released yet but are in working condition so if you don’t find what you are searching for here take a look in the repository.

	energy [https://gitlab.com/mosaik/components/energy] related components:

	mosaik-pandapower [https://gitlab.com/mosaik/components/energy/mosaik-pandapower]
is an adapter for the pandapower [http://www.pandapower.org/] power system
modeling, analysis and optimization tool. Not maintained anymore, please install the mosaik-pandapower2 [https://gitlab.com/mosaik/components/energy/mosaik-pandapower-2] adapter.

	mosaik-pandapipes [https://gitlab.com/mosaik/components/energy/mosaik-pandapipes]
is an adapter for the pandapipes [https://www.pandapipes.org/] fluid system modeling, analysis and optimization tool.

	mosaik-pypower [https://gitlab.com/mosaik/components/energy/mosaik-pypower] is an
adapter for the PYPOWER [https://github.com/rwl/PYPOWER] load flow
analysis library. Not maintained anymore, please install the mosaik-pandapower2 [https://gitlab.com/mosaik/components/energy/mosaik-pandapower-2] adapter.

	mosaik-heatpump [https://gitlab.com/mosaik/components/energy/mosaik-heatpump]
contains different models for simulation of heatpump systems (detailled documentation
can be found here).

	mosaik-pv [https://gitlab.com/mosaik/components/energy/mosaik-pv]
is a simple PV Simulator based on PyPVSim.

	mosaik-pvlib [https://gitlab.com/mosaik/components/energy/mosaik-pvlib]
is a simple PV Simulator based on pvlib.

	mosaik-pvgis [https://gitlab.com/mosaik/components/energy/mosaik-pvgis]
is a simple PV Simulator based on PVGIS.

	mosaik-householdsim [https://gitlab.com/mosaik/components/energy/mosaik-householdsim]
is a househol simulator that simulate households by serving residual load profiles.

	data [https://gitlab.com/mosaik/components/data] related components:

	mosaik-web [https://gitlab.com/mosaik/components/data/mosaik-web] is a web
visualization for mosaik simulations.

	mosaik-csv [https://gitlab.com/mosaik/components/data/mosaik-csv]
is a simple demo simulators that you can use to integrate CSV data sets into simulation.
It can also write data into CSV data sets.

	mosaik-hdf5 [https://gitlab.com/mosaik/components/data/mosaik-hdf5] allows
to write simulation results to a HDF5 file for further analysis.

	InfluxDB adapter [https://gitlab.com/mosaik/components/data/mosaik-influxdb] to store simulation
results into InfluxDB 1 time series database.

	InfluxDB 2 adapter [https://gitlab.com/mosaik/components/data/mosaik-influxdb2] to store simulation
results into InfluxDB 2 time series database.

	mosaik-sql adapter [https://gitlab.com/mosaik/components/data/mosaik-sql] to store simulation
results into SQL database.

	mosaik-timescaledb adapter [https://gitlab.com/mosaik/components/data/mosaik-timescaledb] to store simulation
results into a postgres or timescale database.

	ZeroMQ adapter [https://gitlab.com/mosaik/components/data/mosaik-zmq] to connect components
with the messaging library ZeroMQ.

	Odysseus-adapter to write results to the data stream management system
Odysseus [https://odysseus.informatik.uni-oldenburg.de/] to mosaik.

	communication [https://gitlab.com/mosaik/components/energy] related components:

	communication simulator [https://gitlab.com/mosaik/components/communication/mosaik-communication] is a
basic communication suite using delays.

	mosaik-104 [https://gitlab.com/mosaik/components/communication/mosaik-104] contains an adapter to receive IEC 60870-5-104 protocol
messages and hands it over to mosaik.

	FMI adapter [https://gitlab.com/mosaik/components/mosaik-fmi] allows to couple Functional Mockup Units (FMU),
which are based on the FMI standard [https://fmi-standard.org].

[image: mosaik] component documentation

The components listed above and provided by the mosaik team, have usually a documentation directly in their repository.
For components which need a more detailled documentation to describe how they work, the documentation is integrated here:

	mosaik-heatpump

[image: mosaik] mosaik-examples

	The mosaik-demo [https://gitlab.com/mosaik/examples/mosaik-demo]
contains a simple demo scenario for mosaik.

	The DES demo [https://gitlab.com/mosaik/examples/des_demos] is a simple example
scenario showing the new mosaik 3.0 DES features

	COmmunication SIMulation for Agents (cosima) [https://gitlab.com/mosaik/examples/cosima] is an example scenario
with integrated communication simulation based on OMNeT++.

	The aiomas demo [https://gitlab.com/mosaik/examples/mosaik-aiomas-demo] is an example project, demonstrating how to couple a
multi-agent system written in aiomas to mosaik.

	The mango demo [https://gitlab.com/mosaik/examples/mosaik-mango-demo] is an example project, demonstrating how to couple a
multi-agent system written in mango to mosaik.

	The binder tutorials [https://gitlab.com/mosaik/examples/mosaik-tutorials-on-binder] contains python notebooks with example scenraios that can be executed on mybinder.

[image: mosaik] mosaik-tools

	icons for the energy domain [https://gitlab.com/mosaik/tools/energy-icons]

	maverig mosaik GUI [https://gitlab.com/mosaik/tools/maverig] is a visualization component, which is
not maintained anymore.

[image: mosaik] basic simulators

In order to test custom-made simulators, two basic simulators are provided to use and connect to.

	The InputSimulator is a simulator that can
be used to feed either a constant value or the value of a function into a
designated simulator ready to handle the data.

	The OutputSimulator writes
data from a custom simulator into a python dictionary.
Users can access this dictionary by calling
get_dict on a
created output simulator entity.

Below is an example code snippet that connects the input simulator with the output simulator and executes ten time steps.
After the simulation is done, the dictionary including the values received by the input simulator is printed.

The output simulator is initialized.
output_dict = world.start("OutputSim")

Two entities of the output simulator model are created.
output_model = output_dict.Dict.create(2)

The input simulator is initialized.
input = world.start("InputSim", step_size=1)

One function input simulator entity is created.
input_model_func = input.Function.create(1, function=sample_function)

One constant input simulator entity is created.
input_model_const = input.Constant.create(1, constant=2)

The input entities are connected to separate output entities
world.connect(input_model_func[0], output_model[1], "value")
world.connect(input_model_const[0], output_model[0], "value")

Run simulation.
world.run(until=END)

Dictionary content is printed.
pprint(output_dict.get_dict(output_model[0].eid))
pprint(output_dict.get_dict(output_model[1].eid))

[image: mosaik] external components

These components are developed by external users of mosaik and we can not guarantee or support
the flawless integration of these tools with mosaik.
If you also have implemented additional tools for mosaik, simulation models or adapters,
feel free to contact us at mosaik [A T] offis.de to be listed here.

	pysimmods [https://gitlab.com/midas-mosaik/pysimmods] contains some simulation models,
which can be used in mosaik scenarios.

	MIDAS [https://gitlab.com/midas-mosaik/midas] contains a semi-automatic scenario configuration
tool.

	mosaik-docker [https://github.com/ERIGrid2/mosaik-docker] is a package for the deployment
of mosaik with Docker.

	ZDIN-ZLE components [https://gitlab.com/zdin-zle/models] contains the research and development of digitalized
energy systems in ZLE using mosaik (collection of simulation models).

	nestli [https://github.com/hues-platform/nestli] (Neighborhood Energy System Testing towards Large-scale
Integration) is a co-simulation environment for benchmarking the performance of BACS (building automation and
control systems). Is uses EnergyPlus and FMUs with mosaik.

	toolbox_doe_sa [https://github.com/ERIGrid2/toolbox_doe_sa] is a toolbox with Design of Experiment (DoE) and
Sensitivity Analysis (SA) methods developed in the ERIGrid 2.0 [https://erigrid2.eu/] project.

	mosaik-demod [https://github.com/epfl-herus/mosaik-demod] is a domestic energy demand modeling simulator.

	palestrai-mosaik [https://gitlab.com/arl2/palaestrai-mosaik] is an adapter to integrate
palaestrAI [https://palaestr.ai] (an universal framework for multi-agent artificial intelligence)
into mosaik.

	QEMS - Quarter Energy Management System [https://gitlab.com/qems/scenarios] contains simulation components,
which are used to simulate an energy management system for neighborhoods for analyzing and optimizing energy flows.

[image: mosaik] external scenarios

These scenarios are developed by external users of mosaik and we can not guarantee or support
the flawless practicability.

	Benchmark Model Multi-Energy Networks [https://github.com/ERIGrid2/benchmark-model-multi-energy-networks/tree/mooc-demo]
contains the implementation of a multi-energy networks (heat and electricity grid) benchmark model
developed in the ERIGrid 2.0 [https://erigrid2.eu/] project.

	Benchmark Model Multi-Energy Networks STL [https://github.com/ERIGrid2/JRA-2.1.3-STL] is based on the
multi-energy networks benchmark and contains a same time loop for improved initialization of the simulators.

	ZDIN-ZLE scenarios [https://gitlab.com/zdin-zle/scenarios] contains the research and development of digitalized
energy systems in ZLE using mosaik (collection of simulation scenarios).

	QEMS - Quarter Energy Management System Scenarios [https://gitlab.com/qems/scenarios] contains scenarios of an energy
management system for neighborhoods for analyzing and optimizing energy flows.

mosaik-heatpump

mosaik-heatpump (v1.0.0) provides models for the simulation of heating systems- consisting of heat pumps, hot water tanks,
and controllers - and adapters for the co-simulation of these models using mosaik.

Installation & Tests

You can install mosaik-heatpump with pip:

pip install mosaik-heatpump

You can run the tests with:

pytest

Getting started

A description of the different models available in the package and examples to use individual models can
be found here.

Example scenarios for the co-simulation of all the models can be found here.

Getting help

Please report bugs and ideas for improvement to our issue tracker [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/issues].

For questions and general discussion about mosaik-heatpump, you can use
mosaik’s GitHub Discussions [https://github.com/orgs/OFFIS-mosaik/discussions].

Citation

The model was initially used and presented here [https://doi.org/10.1186/s42162-021-00180-6] , but it is not
described in detail. We plan to publish a paper presenting the package, and will update this
section after the publication.

License

The package is completely open source and is covered under the MIT License. [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/LICENSE?ref_type=heads]

Models

The package contains the models for the following components of the heating system:

	Heat pump

	Hot water tank

	Controller

Heat pump

The heat pump model comprises four different calculation modes for
simulating the performance of a heat pump - ‘detailed’,
‘fast’, ‘hplib’, and ‘fixed’ modes. The first two are
based on the TESPy library [https://github.com/oemof/tespy],
the third is based on the hplib
library [https://github.com/FZJ-IEK3-VSA/hplib]. In these three
modes, a quasi-steady state modelling approach has been adopted, i.e.,
the conditions of the operation of the heat pump vary with each
time-step and the steady state performance of the heat pump is
calculated at these different conditions for each time-step. The
‘fixed’ mode is the most simplified, operating the heat pump with
a fixed performance irrespective of the different operating conditions.

The model based on hplib, hereafter referred as “hplib” model, is a
parametric fit equation-based model, and thus takes a statistical
approach to predict the performance of the heat pump at different
operating conditions. The model based on TESPy, hereafter referred as
“tespy” model, is more complex and considers the physical states of
the fluids in the different components of the heat pump. Therefore, it
offers greater flexibility than the hplib model in estimating the
performance of the heat pump at different operating conditions.
However, as a result of this increased complexity, the simulation
time for the detailed calculations in tespy model is higher as compared
to that of the simpler calculations in hplib model.

hplib model

The hplib model is based on hplib (“Heat Pump LIBrary”) [https://github.com/FZJ-IEK3-VSA/hplib], an
open-source Python library that simulates the performance heat pumps
using parametric fit equations for the electric power and COP. The fit
parameters are identified by applying a least square regression model on
the publicly available heat pump keymark data [https://keymark.eu/en/products/heatpumps/certified-products] of the European Heat Pump
Association (EHPA). It is possible to simulate the performance of both
air and water source heat pumps. The parameters are available for a
generic heat pump of both the types, as well as specific models
available in the market.

The limits on the operation of the heat pump, the supply water and
source air temperature ranges available from the technical datasheets of
the chosen heat pump model, have been added to the model directly
available in the hplib library.

The equations 1 and 2 are the fit equations for the electric power
and COP respectively. The reference values, Pel,ref is the
electrical power consumption at -7°C source temperature and
52°C supply water temperature. In both the equations,
p1-4 are the fit parameters, Tin is the source inlet
temperature, Tout is the supply water temperature, and
Tamb is the ambient temperature.

[image: Fit equations for the heat pump performance (hplib model)]

The evaporator and condenser inlet temperatures are the inputs to the
model. The model checks if they are within the operating range and
ensures that the source air temperature is lower than the incoming water
temperature. The model then calculates the electric power, COP, the
heating capacity, and the condenser mass flow as outputs. The electric power and
COP are estimated as shown in equations 1 and 2
respectively. The heating capacity is calculated from the electric power
and COP. The mass flow in the condenser is calculated assuming a
temperature difference of 5°C.

How to use the hplib calculation mode

The user must specify the ‘calc_mode’ parameter as ‘hplib’,
and the ‘heat_source’, either ‘air’ or ‘water’, must
be specified. For the ‘hp_model’ parameter, the user can choose
from the different heat pump models available in the public heatpump keymark
database (the keywords can be obtained from the
‘hplib_database.csv’ file). If the ‘hp_model’ is set to
‘Generic’, the user must additionally specify ‘cons_T’,
‘heat_source_T’, and ‘P_th’.

The limits of operation for the heat pump are not available directly
within the model in the hplib library. If a corresponding equivalent
heat pump model based on TESPy is available, the keyword for that model
can be specified in the ‘equivalent_hp_model’. If not, the
operation limits can be specified via ‘hp_limits’ parameter.

An example of the dictionary with the required parameters can be seen in
the module documentation.

tespy model

The tespy model is based on TESPy (“Thermal Engineering Systems in
Python”) [https://github.com/oemof/tespy],
an open-source Python library that provides a powerful
simulation package for thermal processes like power plants, district
heating systems, heat pumps etc. An initial version of this model has
been used in a previous work [https://doi.org/10.1186/s42162-021-00180-6],
and significant changes have been made later for a master’s thesis and for different
research projects. The performance of the heat pump is simulated by
considering the energy and mass balances in the individual
“components” of the heat pump – condenser, evaporator, compressor,
expansion valve, heat exchangers and pumps – and the state of fluids in
the “connections” between these “components.” The
connections and components together form a topological network
that is represented and solved as a system of equations. The schematic
of the heat pump system used in this work is shown in the figure below.

[image: Schematic of the heat pump system network]

Schematic of the heat pump system network

The flexibility offered by the TESPy library in choosing the components
of the network has been implemented through the following features in the model:

Stages of compression

	The heat pump model is available in two system configurations, either
with a one-stage compressor or a two-stage compressor.

Additional components

	Intercooler between the two stages of compression

	Superheater between the evaporator and the compressor

TESPy has two modes of calculation, design and offdesign, to solve
the network. The design mode is used to design the system and forms
the first calculation of the network. While designing the plant, TESPy
offers much greater detail as compared to hplib, in terms of the
parametrization of the individual components, for example, the
isentropic efficiency of the compressor. The offdesign mode is used to
calculate the performance of the system if parameters deviate from the
design point, for example, operation at partial loads or operation at
different temperature/pressure levels. The system calculations from the
design mode form the basis for the offdesign mode. Both of these
calculation modes have been implemented in this model.

How to use the tespy based calculation modes

The user must specify the ‘calc_mode’ parameter as
‘detailed’ or ‘fast’. A detailed description of these two
modes of calculation can be found here.

The ‘heat_source’, either ‘air’ or ‘water’, must be specified.

For the ‘hp_model’ parameter, the user can choose from the different heat
pump models available, shown in the table below.

	Heat pump model from
market

	Keyword for
‘calc_mode’

	Configuration

	Daikin Altherma
ERLQ00
6CV3 [https://www.manualslib.com/manual/1100042/Daikin-Erlq-Cv3.html]

	Air_6kW

	Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 1.8 kW - 12.07 kW

Operating temperatures -
Source air: -20°C to 25°C;
Water supply: 15°C to 55°C

	Daikin Altherma
ERLQ00
8CV3 [https://www.manualslib.com/manual/1100042/Daikin-Erlq-Cv3.html]

	Air_8kW

	Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 1.8 kW - 14.49 kW

Operating temperatures -
Source air: -20°C to 25°C;
Water supply: 15°C to 55°C

	Daikin Altherma
ERLQ01
6CV3 [https://www.manualslib.com/manual/1100042/Daikin-Erlq-Cv3.html]

	Air_16kW

	Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 6.46 kW - 22.9 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 55°C

	Viessmann Vitocal
300-A [https://www.heizungsdiscount24.de/pdf/Viessmann-Waermepumpe-Vitocal-300-A-AWO-Planungsanleitung.pdf]

	Air_25kW

	Stages of compression - 2

Intercooler - No

Superheater - No

Heating capacity range - 10.76 kW - 39.4 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 55°C

	
	Air_25kW_1stage

	Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 5.21 kW - 22.45 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 55°C

	ait-deutschland
LW-300(L
) [https://www.alpha-innotec.ch/alpha-innotec/produkte/waermepumpen/luftwasser/lw-300-l.html]

	Air_30kW

	Stages of compression - 2

Intercooler - No

Superheater - No

Heating capacity range - 15.8 kW - 54 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 60°C

	
	Air_30kW_1stage

	Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 7.3 kW - 30.95 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 60°C

	Viessmann Vitocal
300-A [https://www.heizungsdiscount24.de/pdf/Viessmann-Waermepumpe-Vitocal-300-A-AWO-Planungsanleitung.pdf]

	Air_40kW

	Stages of compression - 2

Intercooler - No

Superheater - No

Heating capacity range - 16.73 kW - 53.41 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 55°C

	
	Air_40kW_1stage

	Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 9.75 kW - 30.35 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 55°C

	Viessmann Vitocal
300-A [https://www.heizungsdiscount24.de/pdf/Viessmann-Waermepumpe-Vitocal-300-A-AWO-Planungsanleitung.pdf]

	Air_60kW

	Stages of compression - 2

Intercooler - No

Superheater - No

Heating capacity range - 21.5 kW - 98.17 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 65°C

	
	Air_60kW_1stage

	Stages of compression - 1

Intercooler - No

Superheater - No

Heating capacity range - 11.98 kW - 50.58 kW

Operating temperatures -
Source air: -20°C to 35°C;
Water supply: 15°C to 65°C

Any other heat pump available in the market, with a different heating
capacity and configuration, can be added to the model, following the
procedure shown in the example of the
“Air_30kW” heat pump.

Note

With TESPy, it is possible to simulate the performance of water-water
heat pumps as well. However, this has not yet been integrated into this
model and will be a part of a later release.

Example

An example scenario using the heat pump simulator in the mosaik
environment is available in the ‘run_heatpump.py’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/docs/code/examples/run_heatpump.py?ref_type=heads] file.

The simulation is configured as shown below. The inputs to the heat pump
model and the outputs from it are handled by ‘mosaik-csv’ .

 4SIM_CONFIG = {
 5 'HeatPumpSim': {
 6 'python': 'mosaik_components.heatpump.Heat_Pump_mosaik:HeatPumpSimulator',
 7 },
 8 'CSV': {
 9 'python': 'mosaik_csv:CSV',
10 },
11 'CSV_writer': {
12 'python': 'mosaik_csv_writer:CSVWriter'
13 },
14}
15
16# Create World
17world = mosaik.World(SIM_CONFIG)
18
19START = '01.01.2016 00:00'
20END = 10 * 15 * 60 # 2.5 Hours or 150 mins

The tespy model is used in the ‘fast’ calculation mode. The ‘Air_8kW’ heat pump is chosen. The
required parameters are set as shown below.

22# Heat pump
23params = {'calc_mode': 'fast',
24 'hp_model': 'Air_8kW',
25 'heat_source': 'air',
26 }
27# configure the simulator
28heatpumpsim = world.start('HeatPumpSim', step_size=15*60)
29# Instantiate model
30heatpump = heatpumpsim.HeatPump(params=params)

The timeseries of heat demand, heat source temperature, and the condenser water inlet
temperature, that are needed as inputs for the model, are available in the ‘heatpump_
data.csv’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/docs/code/examples/data/heatpump_data.csv?ref_type=heads] file.

32# Input data csv
33HEAT_LOAD_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'heatpump_data.csv')
34# configure the simulator
35csv = world.start('CSV', sim_start=START, datafile=HEAT_LOAD_DATA)
36# Instantiate model
37heat_load = csv.HP()

The output data is saved into ‘hp_trial.csv’ file.

39# Output data storage
40# configure the simulator
41csv_sim_writer = world.start('CSV_writer', start_date='01.01.2020 00:00', date_format='%d.%m.%Y %H:%M',
42 output_file='hp_trial.csv')
43# Instantiate model
44csv_writer = csv_sim_writer.CSVWriter(buff_size=60 * 60)

The different entities are then connected and the simulation is executed.

46# Connect entities
47world.connect(heat_load, heatpump, 'Q_Demand', 'heat_source_T', ('heat_source_T', 'T_amb'), 'cond_in_T')
48world.connect(heatpump, csv_writer, 'Q_Demand', 'Q_Supplied', 'heat_source_T', 'P_Required', 'COP')
49
50# Run simulation
51world.run(until=END)

Module Documentation

This module contains a simulation model of a Heat Pump based on the library TESPy.

	
class mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump(params, COP_m_data)

	Simulation model of a heat pump based on the libraries TESPy and hplib.

Heat pump parameters are provided at instantiation by the dictionary params. The following dictionary contains
the parameters that are mandatory:

{
 'calc_mode': 'hplib',
 'hp_model': 'LW 300(L)',
 'heat_source': 'air',
}

Explanation of the entries in the dictionary:

	calc_mode: The calculation mode that is used by the heat pump model. Currently, ‘detailed’, ‘fast’,
‘hplib’, and ‘fixed’ calculation modes are available. The differences are explained in the documentation.

	hp_model: The specific model of the heat pump that must be simulated. The different models available currently
can be found in the documentation. This need not be specified for the ‘fixed’ calculation mode.

	heat_source: The fluid that acts as the source of heat for the heat pump, either ‘water’ or ‘air’

If the ‘hplib’ calculation mode is chosen, the following parameter is required in addition to the mandatory
ones:

{
 'equivalent_hp_model': 'Air_30kW',
}

	equivalent_hp_model: The heat pump model from the saved data file whose limits of operation will be applied

Alternatively, the limits can be directly specified in the following parameter:

{
 'hp_limits': { 'heat_source_T_min': -10, 'heat_source_T_max': 35, 'cons_T_min': 25, 'cons_T_max': 55,
 'heatload_min': 15000 }
}

For the ‘hplib’ calculation mode if the ‘Generic’ heat pump model is chosen, the following parameters are
required in addition to the mandatory ones:

{
 'cons_T': 35,
 'heat_source_T': 12,
 'P_th': 35000,
}

	cons_T: The temperature at which heat is supplied to the consumer (in °C).

	heat_source_T: The temperature at which the fluid (water or air) is available as the heat source (in °C).

	P_th: The heating capacity of the heat pump (in W).

If the ‘fixed’ calculation mode is chosen, the following parameters are required in addition to the mandatory
ones:

{
 'COP': 3.5,
 'heating capacity': 35000,
 'cond_m': 0.5,
}

	COP: The COP of the heat pump.

	heating_capacity: The heating capacity of the heat pump (in W).

	cond_m: The mass flow rate of water in the condenser (in kg/s).

	
design

	stores the design of the heat pump in a
Heat_Pump_Model.Heat_Pump_Initiation object

	
state

	stores the state variables of the heat pump in a
Heat_Pump_Model.Heat_Pump_State object

	
inputs

	stores the input parameters of the heat pump model in a
Heat_Pump_Model.Heat_Pump_Inputs object

	
step()

	Perform simulation step with step size step_size

	
class mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_Inputs(params)

	Inputs variables to the heat pump for each time step

	
Q_Demand

	The heat demand of the consumer in W

	
heat_source_T

	The temperature of the heat source (in °C)

	
T_amb

	The ambient temperature (in °C)

	
cond_in_T

	The temperature at which the water reenters the condenser (in °C)

	
step_size

	step size in seconds

	
class mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State

	Attributes that define the state of the Heat_Pump

	
P_Required

	Power consumption of the heat pump in W

	
COP

	COP of the heat pump

	
Q_Demand

	The heat demand of the consumer in W

	
Q_Supplied

	The heat supplied to the consumer in W

	
Q_evap

	The heat removed in the evaporator in W

	
cons_T

	The temperature at which heat is supplied to the consumer (in °C)

	
cond_in_T

	The temperature at which the water reenters the condenser (in °C)

	
heat_source_T

	The temperature of the heat source (in °C)

	
T_amb

	The ambient temperature (in °C)

	
cond_m

	The mass flow rate of water in the condenser of the heat pump (in kg/s)

	
cond_m_neg

	The negative of the mass flow rate of water in the condenser of the heat pump (in kg/s)

	
step_executed

	The execution of the step function of the heat pump model

Hot water tank

The hot water tank model developed for another project [https://www.vde-verlag.de/proceedings-de/454308056.html], is used in
this work to act as a buffer in between the heating device and the heat
consumer. It is a multinode stratified thermal tank model [https://doi.org/10.1016/j.apenergy.2019.02.075], where
the tank volume is divided into a specified number of layers (nodes) of
equal volume, each characterized by a specific temperature. A
traditional density distribution approach is adopted where the water
flowing into the tank enters the layer that best matches its density
(i.e., temperature). The model assumes that the fluid streams are fully
mixed before leaving each of the layers and the flows between the layers
follow the law of mass conservation. Heat transfer to the surrounding
environment from the walls of the tank, and the heat transfer between
the layers have been considered.

Parametrization of the model

The schematic of the hot water tank model is shown in the figure below. The
dimensions of the tank are specified in terms of its height, and either
the volume or diameter. The tank can be parametrized with sensors in the
model to record its temperature. The initial temperature of all the
layers must be set at the beginning of the simulation.

The flows into and out of the tank are specified as the connections of
the hot water tank model. The flow going to the heat pump (HP_out),
the space heating demand (SH_out), and the domestic hot water demand
(DHW_out) are connected to the bottom layer, the fourth layer and the
top layer respectively in the example schematic shown below.
As explained earlier, the flows coming into the
tank are not connected to a fixed layer in the tank. They are connected
to the layer with a temperature closest to that of the flow.

[image: Schematic representation of the hot water tank model (example with 6 layers)]

Schematic representation of the hot water tank model (example with 6 layers)

The heat transfer coefficient of the walls of the tank (htc_walls) is
assumed to be 0.28 W/m2-K . The heat transfer
coefficient for the heat transfer between the layers of the tank is
assumed to be 1.5 times the thermal conductivity of water.
The value is calculated as 0.897 W/m-K, considering the thermal
conductivity of water to be 0.598 W/m-K. However, these values can
be changed by modifying the parameters dictionary of the hot water tank
model.

Calculation of the model

The initial temperature profile inside the tank can be specified at the
time of initialization of the model. For flows coming into the tank,
both the temperature and flow rate should be specified. For the flows
going out of the tank, only the flow rate should be specified, as the
temperature is obtained from the corresponding layer of the tank. The
model ensures that the overall flow into and out of the tank is equal.
The model then updates the temperatures of each layer based on the water
flows through the specified connections, the heat transfer between the
layers and the heat transfer to the surrounding environment. The model
has the functionality to flip the layers to ensure a negative
temperature gradient from the top to the bottom of the tank. Finally,
the model updates the connections with respect to the updated layer
temperatures. For the flows going out of the tank, the temperature is
updated. For the flows coming into the tank, the corresponding layer is
updated.

Example

An example scenario using the hot water tank simulator in the mosaik
environment is available in the ‘run_tank.py’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/docs/code/examples/run_tank.py?ref_type=heads] file.

The simulation is configured as shown below. The inputs to the hot water tank
model and the outputs from it are handled by ‘mosaik-csv’.

 5SIM_CONFIG = {
 6 'HotWaterTankSim': {
 7 'python': 'mosaik_components.heatpump.hotwatertank.hotwatertank_mosaik:HotWaterTankSimulator',
 8 },
 9 'CSV': {
10 'python': 'mosaik_csv:CSV',
11 },
12 'CSV_writer': {
13 'python': 'mosaik_csv_writer:CSVWriter'
14 },
15}
16
17world = mosaik.World(SIM_CONFIG)
18
19START = '01.01.2016 00:00'
20END = 7 * 15 * 60

The hot water tank model has one inlet connection (‘cc_in’) and one outlet
connection (‘cc_out’). The required parameters and the initial values are set
as shown below.

22# Hot water tank
23params = {
24 'height': 2100,
25 'diameter': 1200,
26 'T_env': 20.0,
27 'htc_walls': 0.28,
28 'htc_layers': 0.897,
29 'n_layers': 3,
30 'n_sensors': 3,
31 'connections': {
32 'cc_in': {'pos': 1500},
33 'cc_out': {'pos': 10},
34 }
35 }
36init_vals = {
37 'layers': {'T': [30, 50, 70]}
38 }
39# configure the simulator
40hwtsim = world.start('HotWaterTankSim', step_size=15*60, config=params)
41# Instantiate model
42hwt = hwtsim.HotWaterTank(params=params, init_vals=init_vals)

The mass flow and temperature timeseries for these connections, that are needed as
inputs for the model, are available in the ‘tank_data.csv’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/docs/code/examples/data/tank_data.csv?ref_type=heads] file.

44# Input data csv
45HWT_FLOW_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'tank_data.csv')
46# configure the simulator
47csv = world.start('CSV', sim_start=START, datafile=HWT_FLOW_DATA)
48# Instantiate model
49csv_data = csv.HWT()

The output data is saved into ‘hwt_trial.csv’ file.

51# Output data storage
52# configure the simulator
53csv_sim_writer = world.start('CSV_writer', start_date='01.01.2020 00:00', date_format='%d.%m.%Y %H:%M',
54 output_file='hwt_trial.csv')
55# Instantiate model
56csv_writer = csv_sim_writer.CSVWriter(buff_size=60 * 60)

The different entities are then connected and the simulation is executed.

58# Connect entities
59world.connect(csv_data, hwt, ('T_in', 'cc_in.T'), ('F_in', 'cc_in.F'), ('F_out', 'cc_out.F'))
60world.connect(hwt, csv_writer, 'cc_in.T', 'cc_in.F', 'cc_out.T', 'cc_out.F', 'sensor_00.T', 'sensor_01.T', 'sensor_02.T')
61
62# Run the simulation
63world.run(until=END) # As fast as possilbe

Module Documentation

The hotwatertank module contains classes for the components of the hotwatertank
(Layer, Connection, Sensor, HeatingRod)
and a class for the hotwater tank itself (HotWaterTank).

	
class mosaik_components.heatpump.hotwatertank.hotwatertank.HotWaterTank(params, init_vals=None)

	Simulation model of a hotwater tank.

Stratification is modelled by a number of Layer objects. Heat
producers and consumers can be connected to the hotwatertank via
Connection objects. The temperature at different positions in the
tank can be accessed via Sensor objects.

Hotwater tank parameters are provided at instantiation by the dictionary
params. This is an example, how the dictionary might look like:

params = {
 'height': 2100,
 'diameter': 1200,
 'T_env': 20.0,
 'htc_walls': 1.0,
 'htc_layers': 20,
 'n_layers': 3,
 'n_sensors': 3,
 'connections': {
 'cc_in': {'pos': 0},
 'cc_out': {'pos': 2099},
 'gcb_in': {'pos': 1700},
 'gcb_out': {'pos': 500}
 },
 'heating_rods': {
 'hr_1': {
 'pos': 1800,
 'P_th_stages': [0, 500, 1000, 2000, 3000]
 }
 }
 }

Explanation of the entries in the dictionary:

	height: height of the tank in mm

	diameter: diameter of the tank in mm

	volume: alternatively to the diameter the volume of the tank in liter
can be specified

	T_env: ambient temperature in °C

	htc: heat transfer coefficient of tank walls in W/(m2K)

	htc_layers: imaginary heat transfer coefficient between layers in
W/(m2K)

	n_layers: number of layers, n layers of the same dimension are
created

	n_sensors: number of sensors, the sensors are equidistantly
distributed in the hotwater tank, sensors are named ‘sensor_00’,
‘sensor_01’, …, ‘sensor_n-1’ with ‘sensor_00’ indexing the undermost
sensor

	connections: each connection is specified by an dictionary with a
structure analog to the example

	heating_rods: each heating rod is specified by an dictionary with a
structure analog to the example

It is also possible to define layers and sensors explicitly:

params = {
 'height': 2100,
 'diameter': 1200,
 'T_env': 20.0,
 'htc_walls': 1.0,
 'htc_layers': 20,
 'layers': [
 {'bottom': 0, 'top': 500},
 {'bottom': 500, 'top': 1600},
 {'bottom': 1600, 'top': 2100}
],
 'sensors': {
 'sensor_1', {'pos': 200},
 'sensor_2', {'pos': 1900},
 },
 'connections': {
 'cc_in': {'pos': 0},
 'cc_out': {'pos': 2099},
 'gcb_in': {'pos': 1700},
 'gcb_out': {'pos': 500}
 },
 'heating_rods': {
 'hr_1': {
 'pos': 1800,
 'P_th_stages': [0, 500, 1000, 2000, 3000]
 }
 }
 }

Initial values for the temperature distribution in the tank or the
initial el. power of the heating rod are provided by the
dictionary init_vals, which might look like this:

{
 'layers': {'T': 50},
 'hr_1': { 'P_el': 2000}
}

this:

{
 'layers': {'T': [30, 50, 70]}
 'hr_1': { 'P_el': 2000}
}

or this:

{
 'layers': {'T': [30, 70]},
 'hr_1': { 'P_el': 2000}
}

	T: initial temperature of tank in °C, alternatively a
temperature range can be specified, whereby the lower limit defines the
temperature of ther undermost layer and the upper limit the temperature
of the uppermost layer, inbetween a linear temperature gradient is set,
it is also possible to specify the temperature of each layer individually
by passing a list of length n_layers

	
step(step_size, adapted_step_size_mode=False)

	Perform simulation step with step size step_size

	
property snapshot

	serialize to json

	
property snapshot_connections

	serialize connections to json

	
property T_mean

	Returns mean temperature of hotwatertank in °C

	
class mosaik_components.heatpump.hotwatertank.hotwatertank.Layer(params)

	Layer of hotwater tank

	Parameters:

	layer_params – dictionary containing the following keys

	T - initial temperature of layer in °C

	bottom - bottom of layer relatively to hotwater tank bottom in
mm

	top - top of layer relatively to hotwater tank bottom in mm

	diameter - diameter of layer in mm

	bottom_top - must be True for the bottom or top
layer of the tank. This information is needed to calculate the outer
surface of the layer which in turn is needed to calculate heat losses
to the environment.

	
class mosaik_components.heatpump.hotwatertank.hotwatertank.Sensor(params, layers)

	Temperature sensor in the tank.

	Parameters:

	params – dictionary containing params which specify a sensor, so
far it contains only one entry pos, which defines the position of
the sensor above hotwater tank bottom

	
class mosaik_components.heatpump.hotwatertank.hotwatertank.Connection(params, layers)

	Devices are connected to the hotwater tank via connections.

Each connection is associated with a Layer. For input connections
(F>0) the corresponding layer is determined by temperature comparison. The
layer whose temperature is closest to the connection temperature is the
corresponding one. For output connections (F<0) the corresponding layer
depends on the position of the connection. The corresponding layer of a
connection is not fix, but may change during the simulation, if the flow or
temperatures of the connection or the temperature of the layers changes.

	
class mosaik_components.heatpump.hotwatertank.hotwatertank.MassFlow(F, T)

	Massflow

	
class mosaik_components.heatpump.hotwatertank.hotwatertank.HeatingRod(params, layers, init_vals=None)

	Heating rod integrated into to the hotwater tank.

Heating rods are characterized by their position above tank level and their
power stages. Efficiency is assumed to be constantly 100%.

Controller

The controller model used in this work utilizes simple Boolean logic to:

	Match the heating demands with the supply from the hot water
tank/back up heaters

	Control the operation of the heat pump and adjust the mass flows in
the heat pump circuit

	Control the in-built heating rod in the hot water tank

In order to perform each of the above functions, the controller must be
initialized with a set of parameters. The controller then analyzes the
information received from the different models and sends the necessary
information back to the models for the progression of the simulation.
The specific parameters and the information exchange for each of the
functions are detailed below.

Domestic hot water demand

The controller is initialized with a set point for the domestic hot
water (DHW) supply temperature (T_hr_sp_dhw). For each time step of
the simulation, the controller receives the domestic hot water demand
(dhw_demand), in liters of water, the temperature of the water
available for supply from the hot water tank (dhw_out_T), and the
temperature of the cold inlet water (dhw_in_T). The controller then
calculates the flow rate of water to be supplied from the tank by
dividing the demand with the time step (dhw_out_F). If the water from
the tank is available for supply at a temperature greater than the set
point, flow is adjusted by mixing with the cold inlet water. If the
temperature of water from tank is lower than the set point, the
controller calculates the heat to be supplied by the backup heater to
achieve the set point temperature, which is also the electric power
required (P_hr_dhw) by the heater, assuming 100% efficiency. Finally,
the controller sets the information of the flows to the hot water tank
(dhw_out_F, dhw_in_F).

[image: Control flow for domestic hot water demand]

Control flow for domestic hot water demand

Space heating demand

The controller is initialized with the set points for the space heating
(SH) supply temperature (T_hr_sp_sh) and the temperature
difference in the space heating circuit (sh_dT). For each time step of
the simulation, the controller receives the space heating demand
(sh_demand), in kW, the temperature of the water available for supply
from the hot water tank (sh_out_T). The controller then calculates the
flow rate of water to be supplied from the tank from the demand and the
temperature difference (sh_in_F). If the water from the tank is
available for supply at a temperature greater than the set point, the
return temperature (sh_in_T) is calculated as the difference between
the supply temperature and the temperature difference. If the
temperature of water from tank is lower than the set point, the
controller calculates the heat to be supplied by the backup heater to
achieve the set point temperature, which is also the electric power
required (P_hr_sh) by the heater, assuming 100% efficiency. The
controller also calculates the return temperature as the difference
between the set point temperature and the temperature difference.
Finally, the controller sets the information of the flows to the hot
water tank (sh_out_F, sh_in_F, sh_in_T).

[image: Control flow for space heating demand]

Control flow for space heating demand

Heat pump operation -control strategy 1

A simple hysteresis control based on the temperature of the bottom layer
of the hot water tank has been implemented for the operation of the heat
pump. The controller is initialized with a higher (T_hp_sp_h) and
lower (T_hp_sp_l) temperature set point for the hot water tank. The
controller then receives the temperature of the bottom layer
(bottom_layer_T) of the hot water tank. The bottom layer of the tank
is controlled to be maintained in between the two temperature limits,
i.e., the heat pump is turned on when the temperature in the bottom
layer of the tank falls below the lower set point. The heat pump is
turned off only when the temperature in the bottom layer of the tank is
greater than the higher set point. The heat pump continues to remain
turned off and turns back on only when the temperature of the bottom
layer falls below the lower set point again. The heat pump is controlled
by setting its status (hp_status) to either ‘on’ or ‘off’
based on the control logic explained above. The heat demand from the
heat pump (hp_demand) is calculated to be sent to the heat pump.

[image: Control strategy 1, for the operation of heat pump]

Control strategy 1, for the operation of heat pump

Heat pump operation -control strategy 2

In addition to the control strategy for the heat pump operation
explained earlier, which is based only on the temperature of the bottom
layer of the hot water tank, a control strategy based on the
temperatures of both the bottom and top layers of the tank has been
implemented. The controller is initialized with a higher (T_hp_sp_h)
and lower (T_hp_sp_l) temperature set point for the hot water tank, as
done in the first control strategy. The controller then receives the
temperatures of the top layer (top_layer_T) and the bottom layer
(bottom_layer_T) of the hot water tank. The top layer of the tank is
controlled against the higher set point, i.e., the heat pump is turned
on when the temperature in the top layer of the tank falls below the
higher set point. The bottom layer of the tank is controlled against the
lower set point, i.e., the heat pump is turned off only when the
temperature in the bottom layer of the tank is greater than the lower
set point. In this case, the temperature of the top layer is expected to
be greater than the higher set point due to stratification inside the
tank. The heat pump continues to remain turned off and turns back on
only when the temperature of the top layer falls below the higher set
point again. The heat pump is controlled by setting its status
(hp_status) to either ‘on’ or ‘off’ based on the control
logic explained above. The heat demand from the heat pump (hp_demand)
is calculated to be sent to the heat pump.

[image: Control strategy 2, for the operation of heat pump]

Control strategy 2, for the operation of heat pump

Module Documentation

The controller module contains a class for the controller model (Controller).

	
class mosaik_components.heatpump.controller.controller.Controller(params)

	Simulation model of a controller.

	The controller model used in this work utilizes simple Boolean logic to:
	
	Match the heating demands with the supply from the hot water tank/back up heaters

	Control the operation of the heat pump using different control strategies

Controller parameters are provided at instantiation by the dictionary params. This is an example, how
the dictionary might look like:

params = {
 'T_hp_sp_h': 50,
 'T_hp_sp_l': 40,
 'T_hr_sp_hwt': 40,
 'T_hr_sp_dhw': 40,
 'T_hr_sp_sh': 35,
 'dhw_in_T': 10,
 'sh_dT': 7,
 'operation_mode': 'heating',
 'control_strategy': '1'
 }

Explanation of the entries in the dictionary:

	T_hp_sp_h: The higher temperature set point for heat pump operation (in °C)

	T_hp_sp_l: The lower temperature set point for heat pump operation (in °C)

	T_hr_sp_hwt: The temperature set point for the back up heater within the hot water tank (in °C)

	T_hr_sp_dhw: The temperature set point for the back up heater for domestic hot water supply (in °C)

	T_hr_sp_sh: The temperature set point for the back up heater for space heating supply (in °C)

	dhw_in_T: The default temperature of cold water inlet for domestic hot water (in °C)

	sh_dT: The temperature difference of the water in the space heating supply circuit (in °C)

	operation_mode: The operation mode of the heating system, either ‘heating’ or ‘cooling’

	control_strategy: The control strategy to be used for the heat pump operation. Currently, two
strategies have been implemented (‘1’ & ‘2’)

	
step()

	Perform simulation step with step size step_size

	
calc_dhw_supply()

	Calculate the mass flows and temperatures of water, and the heat from the back up heater in the domestic hot
water (DHW) circuit

	
calc_sh_supply()

	Calculate the mass flows and temperatures of water, and the heat from the back up heater in the space
heating (SH) circuit

Example scenarios

Example scenarios of the co-simulation of the heat pump, hot water tank
and controller models are available in the examples [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/docs/code/examples?ref_type=heads] folder.

There are cyclic dependencies between the models for each time step, for ex.,
the hot water tank needing the information from the controller regarding
the demands and the water flows, and the controller needing information
from the hot water tank regarding the temperature of the water to
calculate the flows. mosaik offers two different ways to resolve such
cyclic dependencies. The first is the time-shifted resolution, where the
information from one model is passed to the other model in the next time
step. The second is the same-time-loop resolution, where the information
exchange between the models is done in the same time step before
progressing the simulation to the next time step. The mosaik
documentation describes these two ways of dealing with cyclic
dependencies in detail (cyclic-data-flows).

The user can choose between the two types of execution, by specifying
the parameter ‘same_time_loop’, while initializing the simulators for
each of the models. The default execution mode is the time-shifted
resolution. For the same-time-loop resolution, the parameter
‘same_time_loop’ has to be set to ‘True’. Depending on the type of
execution, the way the connections between the different models are
setup varies, and can be seen in the example scenarios below.

Note

All the simulators must be set to the same type of execution

Time-shifted resolution

The first example scenario [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/docs/code/examples/scenario_time_shifted.py?ref_type=heads] uses the time-based resolution
of the cyclic dependencies offered by mosaik. The different heat pumps, and
calculation modes available in the heat pump model are simulated along with the
hot water tank, with the controller model matching both the space heating and
domestic hot water demand with the heat available in the hot water tank
and controlling the operation of the heat pump.

The simulation is configured as shown below. The inputs/outputs to/from the models
are handled by ‘mosaik-csv’.

 5sim_config = {
 6 'CSV': {
 7 'python': 'mosaik_csv:CSV',
 8 },
 9 'CSV_writer': {
10 'python': 'mosaik_csv_writer:CSVWriter'
11 },
12 'HeatPumpSim': {
13 'python': 'mosaik_components.heatpump.Heat_Pump_mosaik:HeatPumpSimulator',
14 },
15 'HotWaterTankSim': {
16 'python': 'mosaik_components.heatpump.hotwatertank.hotwatertank_mosaik:HotWaterTankSimulator',
17 },
18 'ControllerSim': {
19 'python': 'mosaik_components.heatpump.controller.controller_mosaik:ControllerSimulator',
20 },
21}
22
23# The start date, duration, and step size for the simulation
24END = 10 * 60
25START = '01.01.2020 00:00'
26STEP_SIZE = 60 * 1

The parameters and/or initial values for the different models are specified.

28#Parameters for mosaik-heatpump
29params_hp = {'hp_model': 'Air_30kW_1stage',
30 'heat_source': 'Air',
31 'cons_T': 35,
32 'Q_Demand': 19780,
33 'cond_in_T': 30,
34 'heat_source_T': 7,
35 }
36#Parameters for hot water tank model
37params_hwt = {
38 'height': 3600,
39 'volume': 4000,
40 'T_env': 20.0,
41 'htc_walls': 0.28,
42 'htc_layers': 0.897,
43 'n_layers': 6,
44 'n_sensors': 6,
45 'connections': {
46 'sh_in': {'pos': 10},
47 'sh_out': {'pos': 2150},
48 'dhw_in': {'pos': 10},
49 'dhw_out': {'pos': 3400},
50 'hp_in': {'pos': 10},
51 'hp_out': {'pos': 500},
52 },
53 }
54init_vals_hwt = {
55 'layers': {'T': [40.0, 40.0, 40.0, 40.0, 40.0, 40.0]}
56 }
57#Parameters for controller model
58params_ctrl = {
59 'T_hp_sp_h': 50,
60 'T_hp_sp_l': 40,
61 'T_hr_sp_dhw': 40,
62 'T_hr_sp_sh': 35,
63 'dhw_in_T': 10,
64 'sh_dT': 7,
65 'operation_mode': 'heating',
66 'control_strategy': '1'
67}

The different types of heat pumps and calculation modes that are simulated are
specified.

28# The different types of heat pumps and calculation modes that are simulated
29model_list = ['Air_30kW_1stage', 'Air_30kW_1stage', 'LW 300(L)', None]
30calc_mode_list = ['detailed', 'fast', 'hplib', 'fixed']
31filename_list = ['detailed', 'fast', 'hplib', 'fixed']

The mosaik ‘world’, and the simulators of the different models are initialized.
The inputs required for the different models – domestic hot water demand
(DHW Demand); space heating demand (SH Demand); the heat source
temperature, which is the ambient air in this case (T_amb); and the
temperature of the cold water replacing the domestic hot water supplied
from the tank (dhw_in_T) – are available in the ‘scenario_data.csv’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/docs/code/examples/data/scenario_data.csv?ref_type=heads] file. The inputs and the outputs are handled by
‘mosaik-csv’ and the output data is saved in csv files.

78 # Initialize the world and the simulators.
79
80 world = mosaik.World(sim_config)
81
82 heatpumpsim = world.start('HeatPumpSim', step_size=STEP_SIZE)
83
84 hwtsim = world.start('HotWaterTankSim', step_size=STEP_SIZE, config=params_hwt)
85
86 ctrlsim = world.start('ControllerSim', step_size=STEP_SIZE)
87
88 heat_load_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'scenario_data.csv')
89 heat_load_sim = world.start('CSV', sim_start=START, datafile=heat_load_file)
90
91 CSV_File = 'Scenario_' + filename_list[i] + '_time_shifted.csv'
92 csv_sim_writer = world.start('CSV_writer', start_date='01.01.2020 00:00', date_format='%d.%m.%Y %H:%M',
93 output_file=CSV_File)

The specific parameters for the different heat pump models and calculation modes are added to the
parameters.

 95 params_hp['calc_mode'] = calc_mode_list[i]
 96 params_hp['hp_model'] = model_list[i]
 97
 98 if 'hplib' in params_hp['calc_mode']:
 99 params_hp['equivalent_hp_model'] = 'Air_30kW_1stage'
100 elif 'fixed' in params_hp['calc_mode']:
101 params_hp['COP'] = 3.5
102 params_hp['heating capacity'] = 15000
103 params_hp['cond_m'] = 0.5

The different models are instantiated.

105 # Instantiate the models
106 heatpumps = heatpumpsim.HeatPump.create(1, params=params_hp)
107
108 hwts = hwtsim.HotWaterTank.create(1, params=params_hwt, init_vals=init_vals_hwt)
109
110 ctrls = ctrlsim.Controller.create(1, params=params_ctrl)
111
112 heat_load = heat_load_sim.HEATLOAD.create(1)
113
114 csv_writer = csv_sim_writer.CSVWriter(buff_size=60 * 60)

The cyclic data flows between the different models are then set up in the time-shifted manner
and the simulation is executed.

116 # connections between the different models
117 world.connect(heat_load[0], ctrls[0], 'T_amb', ('T_amb', 'heat_source_T'), ('SH Demand [kW]', 'sh_demand'),
118 ('DHW Demand [L]', 'dhw_demand'), 'dhw_in_T')
119
120 world.connect(hwts[0], ctrls[0], ('T_mean', 'T_mean_hwt'), ('mass', 'hwt_mass'),
121 ('sensor_00.T', 'bottom_layer_T'), ('sensor_04.T', 'top_layer_T'),
122 ('dhw_out.T', 'dhw_out_T'), ('sh_out.T', 'sh_out_T'), ('hp_out.T', 'hp_out_T'))
123
124 world.connect(ctrls[0], hwts[0], ('sh_in_F', 'sh_in.F'), ('sh_in_T', 'sh_in.T'), ('sh_out_F', 'sh_out.F'),
125 ('dhw_in_F', 'dhw_in.F'), ('dhw_in_T', 'dhw_in.T'), ('dhw_out_F', 'dhw_out.F'), ('T_amb', 'T_env'),
126 time_shifted=True,
127 initial_data={'sh_in_F': 0, 'sh_in_T': 0, 'sh_out_F': 0,
128 'dhw_in_F': 0, 'dhw_in_T': 0, 'dhw_out_F': 0,
129 'T_amb': 0,
130 },
131)
132
133 world.connect(heatpumps[0], ctrls[0], ('Q_Supplied', 'hp_supply'), ('on_fraction', 'hp_on_fraction'),
134 ('cond_m', 'hp_cond_m'))
135
136 world.connect(ctrls[0], heatpumps[0], ('hp_demand', 'Q_Demand'),
137 'T_amb', 'heat_source_T', time_shifted=True,
138 initial_data={'hp_demand': 0, 'T_amb': 5, 'heat_source_T': 5})
139
140 world.connect(hwts[0], heatpumps[0], ('hp_out.T', 'cond_in_T'))
141
142 world.connect(heatpumps[0], hwts[0], ('cons_T', 'hp_in.T'), ('cond_m', 'hp_in.F'), ('cond_m_neg', 'hp_out.F'),
143 time_shifted=True, initial_data={'cons_T': 0, 'cond_m': 0, 'cond_m_neg': 0})
144
145 world.connect(heat_load[0], csv_writer, 'T_amb', 'SH Demand [kW]', 'DHW Demand [L]')
146 world.connect(heatpumps[0], csv_writer, 'Q_Demand', 'Q_Supplied', 'T_amb', 'heat_source_T', 'cons_T', 'P_Required',
147 'COP', 'cond_m', 'cond_in_T', 'on_fraction')
148
149 world.connect(ctrls[0], csv_writer, 'heat_demand', 'heat_supply', 'hp_demand', 'sh_supply', 'sh_demand', 'hp_supply',
150 'sh_in_F', 'sh_in_T', 'sh_out_F', 'sh_out_T', 'dhw_in_F', 'dhw_in_T', 'dhw_out_F', 'dhw_out_T',
151 'hp_in_F', 'hp_in_T', 'hp_out_F', 'hp_out_T', 'P_hr_sh', 'P_hr_dhw', 'dhw_demand', 'dhw_supply')
152 world.connect(hwts[0], csv_writer, 'sensor_00.T', 'sensor_01.T', 'sensor_02.T', 'sensor_03.T', 'sensor_04.T',
153 'sensor_05.T', 'sh_out.T', 'sh_out.F', 'dhw_out.T', 'dhw_out.F', 'hp_in.T', 'hp_in.F', 'hp_out.T', 'hp_out.F',
154 'T_mean', 'sh_in.T', 'sh_in.F', 'dhw_in.T', 'dhw_in.F')
155
156 #Run
157 world.run(until=END)

Same-time-loop resolution

The second example scenario [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/docs/code/examples/scenario_same_time_loop.py?ref_type=heads] uses the event-based resolution
of the same-time-loop cycles offered by mosaik. Only the things that need to be changed
when compared to the time-based resolution are shown below.

While initializing the model simulators, the ‘same_time_loop’ parameter has to be set to
‘True’ for all the models.

82 heatpumpsim = world.start('HeatPumpSim', step_size=STEP_SIZE, same_time_loop=True)
83
84 hwtsim = world.start('HotWaterTankSim', step_size=STEP_SIZE, config=params_hwt, same_time_loop=True)
85
86 ctrlsim = world.start('ControllerSim', step_size=STEP_SIZE, same_time_loop=True)

The cyclic data flows between the different models are then set up in the same-time-loop manner.

116 # connections between the different models
117 world.connect(heat_load[0], ctrls[0], 'T_amb', ('T_amb', 'heat_source_T'), ('SH Demand [kW]', 'sh_demand'),
118 ('DHW Demand [L]', 'dhw_demand'), 'dhw_in_T')
119
120 world.connect(hwts[0], ctrls[0], ('T_mean', 'T_mean_hwt'), ('mass', 'hwt_mass'),
121 ('sensor_00.T', 'bottom_layer_T'), ('sensor_04.T', 'top_layer_T'),
122 ('dhw_out.T', 'dhw_out_T'), ('sh_out.T', 'sh_out_T'),
123 ('hp_out.T', 'hp_out_T'))
124
125 world.connect(ctrls[0], hwts[0], ('sh_in_F', 'sh_in.F'), ('sh_in_T', 'sh_in.T'), ('sh_out_F', 'sh_out.F'),
126 ('dhw_in_F', 'dhw_in.F'), ('dhw_in_T', 'dhw_in.T'), ('dhw_out_F', 'dhw_out.F'), ('T_amb_hwt', 'T_env'),
127 ('hp_in_T', 'hp_in.T'), ('hp_in_F', 'hp_in.F'), ('hp_out_F', 'hp_out.F'), weak=True)
128
129 world.connect(heatpumps[0], ctrls[0], ('Q_Supplied', 'hp_supply'), ('on_fraction', 'hp_on_fraction'),
130 ('cond_m', 'hp_in_F'), ('cond_m_neg', 'hp_out_F'), ('cons_T', 'hp_in_T'), weak=True)
131
132 world.connect(ctrls[0], heatpumps[0], ('hp_demand', 'Q_Demand'), ('hp_out_T', 'cond_in_T'),
133 'T_amb', 'heat_source_T')
134
135
136 world.connect(heat_load[0], csv_writer, 'T_amb', 'SH Demand [kW]', 'DHW Demand [L]')
137 world.connect(heatpumps[0], csv_writer, 'Q_Demand', 'Q_Supplied', 'T_amb', 'heat_source_T', 'cons_T', 'P_Required',
138 'COP', 'cond_m', 'cond_in_T', 'on_fraction')
139
140 world.connect(ctrls[0], csv_writer, 'heat_demand', 'heat_supply', 'hp_demand', 'sh_supply', 'sh_demand', 'hp_supply',
141 'sh_in_F', 'sh_in_T', 'sh_out_F', 'sh_out_T','dhw_in_F', 'dhw_in_T', 'dhw_out_F', 'dhw_out_T',
142 'hp_in_F', 'hp_in_T', 'hp_out_F', 'hp_out_T', 'P_hr_sh', 'P_hr_dhw', 'dhw_demand', 'dhw_supply')
143 world.connect(hwts[0], csv_writer, 'sensor_00.T', 'sensor_01.T', 'sensor_02.T','sensor_03.T', 'sensor_04.T', 'sensor_05.T',
144 'sh_out.T', 'sh_out.F', 'dhw_out.T', 'dhw_out.F', 'hp_in.T', 'hp_in.F', 'hp_out.T', 'hp_out.F',
145 'T_mean', 'sh_in.T', 'sh_in.F', 'dhw_in.T', 'dhw_in.F')

For the same-time-loop execution, it is important to set the initial event that kick-starts the
simulation, which is the simulation of the hot water tank for this scenario. The simulation is
then executed.

147 # To start hwts as first simulator
148 world.set_initial_event(hwts[0].sid)
149
150 #Run
151 world.run(until=END)

Integrating new heat pumps

While the hplib heat pump model available in the package can simulate
the performance of the different heat pumps from the keymark data [https://keymark.eu/en/products/heatpumps/certified-products], the tespy
model provides fewer options. In order to simulate different heat pumps,
apart from the ones already available in this package, the heat pumps have
to be intergrated to the tespy model. An example of the integration of
the “Air_30kW” heat pump, based on “ait-deutschland LW-300(L)” [https://www.alpha-innotec.ch/alpha-innotec/produkte/waermepumpen/luftwasser/lw-300-l.html], shows the procedure in detail. The development of the model to
simulate the performance of this specific heat pump is described in the
steps below:

Step 1: Initial Parametrization

Step 2: Compressor efficiency map

Step 3: ‘fast’ mode data

Initial Parametrization

The tutorial [https://tespy.readthedocs.io/en/main/tutorials/heat_pump_steps.html]
provided in TESPy’s documentation for simulating heat pumps
has been followed to develop the first design calculation, available in
the ‘Parametrization_NominalData.py’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/scripts/Compressor_Parametrization/Parametrization_NominalData.py?ref_type=heads] file. While the tutorial
provides a detailed explanation of the complete parametrization of the model, only
the most relevant parameters are discussed here.

The data obtained from the manufacturer’s datasheet corresponding to the
nominal operating point is shown in table below.

Nominal operating point data

	Parameter

	Value

	Units

	Condenser inlet temperature

	30

	°C

	Condenser outlet temperature

	35

	°C

	Source air temperature

	7

	°C

	Temperature difference for air in evaporator

	5

	°C

	Heating capacity

	32.5

	kW

	Electrical Power

	8.56

	kW

	Refrigerant

	R448A

	–

This data has been used to set the parameters of the corresponding components
and connections as described in the tutorial. Since the refrigerant R448A is
not available in TESPy, R404A has been used due to the similarity in their
properties (reference [https://doi.org/10.1016/j.enconman.2015.08.034]).

TESPy uses the isentropic efficiency of the compressor to calculate the power
consumption as shown in equation below.

[image: Equation for calculating power consumed by the compressor]

Since the isentropic efficiency of the compressor (‘eta_s’) is not available in the
datasheet, the value has been changed on a trial-and-error basis to
match the power consumption calculated by the model to that mentioned in
the datasheet.

Note

For heat pumps having two stages of compression, like the one in this example, in addition
to the isentropic efficiency, the pressure ratio (‘pr’) for the second stage is also a
required parameter.

This has to be adjusted on a trial and error basis as well, so that it works for
the different range of operating conditions of the heat pump. This could be checked, by choosing
data points from the edges of the operation range, and following the same procedure as done for
nominal operating point data.

Compressor efficiency map

The design case from the previous step can be used as the basis for
offdesign calculations to predict the system’s performance (in terms
of Electrical power/COP) at different operating conditions, i.e., a
different source or consumer inlet temperature. While the tutorial in
TESPy’s documentation provides a detailed explanation of all the changes
between the two modes of calculations, only the most relevant changes
are discussed here.

The refrigerant and the temperature difference for air in the evaporator
remain unchanged. The source air temperature and the condenser inlet
temperature are available as inputs to the model. The maximum heating
capacity at a particular source air temperature is available from the
datasheet. The condenser outlet temperature is not known in the
off-design case, but must be predicted. In the design mode, the heating
capacity and temperature difference between condenser inlet and outlet
are used to calculate the mass flow in the circuit. This mass flow is
used to calculate the condenser outlet temperature in the off-design
mode.

In order to determine the electrical power consumption, the isentropic
efficiency of the compressor is required. Since this is not available in
the datasheets for the entire range of operation, the default
characteristic curve [https://tespy.readthedocs.io/en/main/api/data.html#id6]
available in the TESPy library, shown in figure below, is used.

[image: Default characteristic curve for the isentropic efficiency of the compressor in TESPy library]

Default characteristic curve for the isentropic efficiency of the
compressor in TESPy library

The x-axis is the ratio of the mass flow into the
compressor in the design and off-design cases, and the y-axis is the
ratio of the isentropic efficiencies in the design and off-design
conditions.

The default characteristic curve is generic and therefore does not
accurately reflect the performance of the specific model of the heat
pump chosen. Instead of relying on the isentropic efficiency from a
single design point and the default characteristic curve across the
entire range of operation, a series of design points have been developed
based on the data available in the manufacturer’s datasheet for the
operating conditions shown in table 3.3.

Design point conditions

	Source air
temperatures (°C)

	-20, -15, -12, -10, -7, -2, 2, 7, 10, 12,
15, 20, 25, 30, 35

	Condenser outlet
temperatures (°C)

	15, 20, 25, 30, 35, 40, 45, 50, 55

The operating range of the heat pump for the source air temperature is
-20°C to 35°C. The actual operation range of the
heat pump on the condenser outlet temperature is 25°C to
60°C. In the model, the range is further increased to
15°C to 60°C, in order to simulate low temperature
lift conditions. The temperature difference in the condenser, constant
at 5°C in the design case, has been used to calculate the
condenser inlet temperature.

Extension of the heating capacity table of the heat pump

The manufacturer’s datasheets contain the heating power curves and the
electrical power curves as shown in figure below.

[image: Heating capacity, electrical power, and COP curves of the chosen heat pump]

Heating capacity, electrical power, and COP curves of the chosen
heat pump

In all the plots, the x-axis corresponds to the source (air) temperature.
The data is available for the entire range of source air temperature, but
only for two condenser outlet temperatures, 35°C and 55°C.

The heating capacity increases with an increase in the source air
temperature, but does not change significantly with a change in the
condenser outlet temperature. At a given source air temperature, the
heating capacity for all the other condenser outlet temperatures is
assumed to be the average of the heating capacities at 35°C
and 55°C.

The power consumption changes with both the source air temperature and
the condenser outlet temperature. An approach based on Carnot efficiency
has been used to predict the power consumption at the condenser outlet
temperatures other than 35°C and 55°C. The ideal
COP is calculated for all the operating points, using the equation below
(note that the temperatures have to be in Kelvin scale).

[image: Equation for ideal COP]

Equation for ideal COP

For the operating points where the power consumption/COP is known, the
Carnot efficiency has been calculated using the following equation.

[image: Equation for Carnot efficiency]

Equation for Carnot efficiency

The temperature lift for all the operating points is calculated using
equation below

[image: Equation for temperature lift]

Equation for temperature lift

A second order polynomial equation has been fit to the pairs of the
Carnot efficiencies and the corresponding temperature lifts, of
operating points with condenser outlet temperatures 35°C and
55°C, as shown in figure below.

[image: Carnot efficiency/COP vs Temperature Lift plot for the chosen heat pump]

Carnot efficiency/COP vs Temperature Lift plot for the chosen heat
pump

In this figure, the COP of the heat pump is also plotted against the
temperature lift. The Carnot efficiencies of the remaining operating points
are estimated using the fit equation, which in turn are used to estimate
the real COP/power consumption.

For the series of design points identified, the calculated heating
capacity and power consumption data is summarized in the table below.

[image: Expanded heating capacity table of the heat pump]

Expanded heating capacity table of the heat pump

The heating capacity data has to be saved in the ‘Heat_Load_Data.csv’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/scripts/Compressor_Parametrization/Data/Heat_Load_Data.csv?ref_type=heads] file and the power consumption data has
to be saved in the ‘PI_Data.csv’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/scripts/Compressor_Parametrization/Data/PI_Data.csv?ref_type=heads] file.

Generating the compressor efficiency map

The tutorial available in the ‘script_etas_gen.ipynb’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/scripts/Compressor_Parametrization/script_etas_gen.ipynb?ref_type=heads] is followed to generate the compressor efficiency map. The
model is parametrized for each of the design point in the expanded heating
capacity table from the previous step, as done for the initial parametrization
of the model for the nominal operating point. As the power consumption of the
compressor is dependent on the isentropic efficiency, which is set as a
parameter in the compressor, it is changed for each point in order to match
the power consumption calculated by the model and that in the table. The
isentropic efficiency values are restricted to the range of 0.3 - 0.95.

Note

In the instances when the power values cannot be matched even at the extreme
values for the compressor isentropic efficiency, the extreme values are assumed
despite the difference in power predicted by the model and that in the table.

The compressor isentropic
efficiency map generated as described is summarized in table below.

[image: Compressor isentropic efficiency map]

Compressor isentropic efficiency map

‘fast’ mode data

‘detailed’ calculation mode of the model for the simulations

After establishing the series of design points, the model is then developed
to estimate the performance of the heat pump at any operating
point within its range. The heat pump is used as the primary heating
source for the hot water tank. The temperature of the water flow to the
heat pump from the hot water tank, and the source air temperature are
the required inputs.

The model checks if the conditions are within the operation range of the
heat pump and ensures that the source air temperature is lower than the
incoming water temperature. The source air temperature closest to the
input value is then identified from the expanded heating capacity table.
The model checks that the inlet water temperature is lower than the maximum
possible condenser outlet temperature at the identified design source air
temperature. Assuming a temperature difference of 5°C in the
condenser in the design case, an initial condenser outlet temperature is
estimated. The closest design point to the estimated condenser outlet
temperature is then identified from the extended heating capacity
table.
In case this estimated condenser temperature is greater than the maximum
possible outlet temperature, the maximum value is used as the design point.
The heating capacity and the isentropic efficiency of the compressor
corresponding to the design point source air and condenser outlet water
temperatures are identified from the respective tables, the expanded
heating capacity table and compressor
efficiency table.

The model first performs a network calculation in the design mode at the
identified design point operating conditions. An offdesign mode
calculation of the network is then performed for the actual input
operating conditions, based on the design mode calculation and the
default characteristics of TESPy, to obtain the condenser outlet water
temperature (supply temperature), the mass flow of water in the
condenser and the power consumption of the heat pump.

[image: Example of detailed calculation mode]

Example of detailed calculation mode

‘fast’ calculation mode of the model

In addition to the detailed mode of calculation explained above, a fast
calculation mode has also been implemented in the model to improve its
computational speed. The model is discreetly parametrized over the
entire operation range of the heat pump, at a resolution of
1°C for both the inputs, the source air temperature, and the
condenser water inlet temperature. The detailed calculation mode can be
implemented over this range of inputs and the output data from the
model- the coefficient of performance (COP) of the heat pump and the
condenser mass flow rate- can be saved. During the actual simulation, the
saved inputs that are lower/closest to the actual input data are
identified, and the saved output data for these points are used to
calculate the outputs of the model, rather than performing the actual
design and offdesign calculations. Though the granularity of the model
is reduced, there is a significant improvement in the simulation
duration.

[image: Flowchart explaining the fast calculation mode of the TESPy heat pump model]

Flowchart explaining the fast calculation mode of the TESPy heat pump
model

Generation of ‘fast’ mode data

The data for the ‘fast’ calculation mode can be calculated and saved as
follows:

	Adding the new heat pump model

The initial parametrization of the new heat pump model, based on
the nominal operating point, from the ‘Parametrization_NominalData.py’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/scripts/Compressor_Parametrization/Parametrization_NominalData.py?ref_type=heads] file, should be added
to the ‘_design_hp’ method of the heat_pump_design.py [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/mosaik_components/heatpump/Heat_Pump_Design.py?ref_type=heads]
file (line 217).

	‘fast’ calculation mode data generation

The tutorial in the ‘Fast_Calculation_Mode.ipynb’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/scripts/Fast_Calculation_Mode/Fast_Calculation_Mode.ipynb?ref_type=heads], should be followed to generate the fast mode data.

	‘fast’ calculation mode data processing

The tutorial in the ‘Fast_Mode_DataProcessing.ipynb’ [https://gitlab.com/mosaik/components/energy/mosaik-heatpump/-/blob/master/scripts/Fast_Calculation_Mode/Fast_Mode_DataProcessing.ipynb?ref_type=heads] script should be used to process the fast mode data, to fill
the missing values in the data that result from the errors in the model etc.

Module Documentation

	
class mosaik_components.heatpump.Heat_Pump_Design.Heat_Pump_Design(params, COP_m_data=None)

	Design of the heat pump model for the different calculation modes

	
_take_closest(myList, myNumber)

	Assumes myList is sorted. Returns closest value to myNumber.
If two numbers are equally close, return the smallest number.

	
_etas_heatload_id()

	
	Used for all the calculation modes except ‘fixed’ mode.

	Uses the pre-saved data from the “eta_s_data.json” file

	Checks the inputs, cond_in_T and heat_source_T, against the limits of operation for the chosen heat
pump model.

	Identifies the closest design point for the inputs, for the ‘detailed’ calculation mode

	
_design_hp()

	
	Used in the ‘detailed’ calculation mode to solve the TESPy network of the heat pump in the design mode

	Number of stages of compression can be 1 (default) or 2

	Intercooler between the two stages of compression is optional

	Superheater between the evaporator and the compressor is optional

	fixed and variable mass flow in the evaporator

	
p_cop_calc()

	Calculates the power consumption and the COP of the heat pump in the ‘detailed’ calculation mode

	
step(inputs)

	Performs simulation step with the step size ‘step_size’

	
step_error()

	Sets the outputs of the heat pump model to 0

Tutorials

In the basic tutorial you’ll learn how you can integrate simulators and control
strategy into the mosaik ecosystem as well as how you create simulation
scenarios and execute them.

In the first part, we’ll implement the Sim API for a simple example simulator.
We’ll also create a simulation scenario in which that simulator will send its
data to mosaik-hdf5 [https://pypi.python.org/pypi/mosaik-hdf5] which will
store it in an HDF5 database.

In the second part, we’ll also integrate a simple control mechanism into
mosaik. We’ll then create a scenario in which that control mechanism controls
the example simulator from part one.

In the third part, we’ll implement an additional master controller, which communicates
with the other controllers. This communication takes place as same-time loop without
progress in simulation time and illustrated this new mosaik 3.0 feature.
It can be used for negotiation between multiple agents or controllers, like shown
in the tutorial at hand, but also for initialization of simulations consisting of
multiple phsycial systems.

In the next part, we’ll implement a scenario with a new controller, which sets external events.
These external events come from a simple button click-event of a graphical user interface.
Therefore, with this new mosaik 3.0 feature it is possible to do Human-in-the-Loop simulations to support human interactions.

The Odysseus tutorial you’ll learn how to connect the data-stream-management-tool
Odysseus to mosaik. The second part shows some examples on how to use Odysseus.
This tutorial may also be of some use when you want to connect any other component
via ZeroMQ.

The Java API tutorial shows you how to use the Java API. This API is intended to
connect simulators written in Java to mosaik. You can use the Java-API also as a
RCP-Server if you want to run your Java-simulator on a separate machine.

Basic tutorial

	Integrating a simulation model into the mosaik ecosystem

	Creating and running simple simulation scenarios

	Adding a control mechanism to a scenario

	Integrating a control mechanism

	Same-time loops

	Set external events

Odysseus tutorial

	Connecting mosaik and Odysseus

	Using Odysseus to process, visualize and store simulation data

Java API tutorial

	Integrating a Model in Java

Java Generics API tutorial

	Integrating a Model in Java with Generics / Annotations API

Jupyter tutorial

	Use mosaik with Jupyter Notebooks

Visualize scenarios

	Plotting graphs

Connecting mosaik with Apache Superset

	Using Apache Superset to visualize simulation data

Integrating a simulation model into the mosaik ecosystem

In this section we’ll first implement a simple example simulator. We’ll then
implement mosaik’s Sim-API step-by-step.

The model

We want to implement a very simple model with the following behavior:

	val0 = init_val

	vali = vali − 1 + delta for i ∈ N, i > 0, delta
∈ Z

That simply means our model has a value val to which we add some delta
(which is a positive or negative integer) at every simulation step. Our model
has the attribute delta (with value 1 by default) which can be changed by
control mechanisms to alter the behavior of the model. And it has the (output)
attribute val which is its current value.

[image: Schematic diagram of our example model.]
Schematic diagram of our example model. You can change the delta and
collect the val as output.

Here is a possible implementation of that simulation model in Python:

example_model.py
"""
This module contains a simple example model.

"""

class Model:
 """Simple model that increases its value *val* with some *delta* every
 step.

 You can optionally set the initial value *init_val*. It defaults to ``0``.

 """
 def __init__(self, init_val=0):
 self.val = init_val
 self.delta = 1

 def step(self):
 """Perform a simulation step by adding *delta* to *val*."""
 self.val += self.delta

Setup for the API implementation

So lets start implementing mosaik’s Sim-API for this model. We can use the
Python high-level API for this. This package
eases our workload, because it already implements everything necessary for
communicating with mosaik. It provides an abstract base class which we can
sub-class. So we only need to implement four methods and we are done.

If you already installed mosaik and the demo, you
already have this package installed in your mosaik virtualenv.

We start by creating a new simulator_mosaik.py and import the module
containing the mosaik API as well as our model:

simulator_mosaik.py
"""
Mosaik interface for the example simulator.

"""
import mosaik_api_v3

import example_model

Simulator meta data

Next, we prepare the meta data dictionary that tells mosaik which
time paradigm it follows (time-based, event-based,
or hybrid), which models our simulator implements and which parameters and
attributes it has. Since this data is usually constant, we define this at
module level (which improves readability):

 'type': 'hybrid',
 'models': {
 'ExampleModel': {
 'public': True,
 'params': ['init_val'],
 'attrs': ['delta', 'val'],
 'trigger': ['delta'],
 },
 },
}

In this case we create a hybrid simulator, because we want to be able to
control it using delta events later. For now, we won’t use delta,
though.
We added our “ExampleModel” model with the parameter init_val and the
attributes delta and val. At this point we don’t care if they are inputs
or outputs. We just list everything we can read or write. The public flag
should usually be True. You can read more about it in the Sim API
docs. From this information, mosaik deduces that our model could
be used in the following way:

Model name and "params" are used for constructing instances:
model = example_model.Model(init_val=42)
"attrs" are normal attributes:
print(model.val)
print(model.delta)

The Simulator class

The package mosaik_api_v3 defines a base class Simulator for which we now
need to write a sub-class:

class ExampleSim(mosaik_api_v3.Simulator):
 def __init__(self):
 super().__init__(META)
 self.eid_prefix = 'Model_'
 self.entities = {} # Maps EIDs to model instances/entities
 self.time = 0

In our simulator’s __init__() method (the constructor) we need to call
Simulator.__init__() and pass the meta data dictionary to it.
Simulator.__init__() will add some more information to the meta data and
set it as self.meta to our instance.

We also set a prefix for our entity IDs and prepare a dictionary which will
hold some information about the entities that we gonna create.

We can now start to implement the four API calls init, create, step
and get_data:

init()

This method will be called exactly once while the simulator is being started
via World.start.
It is used for additional initialization tasks (e.g., it can handle parameters
that you pass to a simulator in your scenario definition). It must return the
meta data dictionary self.meta:

 def init(self, sid, time_resolution, eid_prefix=None):
 if float(time_resolution) != 1.:
 raise ValueError('ExampleSim only supports time_resolution=1., but'
 ' %s was set.' % time_resolution)
 if eid_prefix is not None:
 self.eid_prefix = eid_prefix
 return self.meta

The first argument is the ID that mosaik gave to that simulator instance. The
second argument is the time resolution of the
scenario. In this example only the default value of 1. (second per integer
time step) is supported. If you set another value in the scenario, the
simulator would throw an error and stop.

In addition to that, you can define further (optional) parameters which you
can later set in your scenario. In this case, we can optionally overwrite the
eid_prefix that we defined in __init__().

create()

create() is called in order to initialize a number of simulation model
instances (entities) within that simulator. It must return a list with some
information about each entity created:

 def create(self, num, model, init_val):
 next_eid = len(self.entities)
 entities = []

 for i in range(next_eid, next_eid + num):
 model_instance = example_model.Model(init_val)
 eid = '%s%d' % (self.eid_prefix, i)
 self.entities[eid] = model_instance
 entities.append({'eid': eid, 'type': model})

 return entities

The first two parameters tell mosaik how many instances of which model you
want to create. As in init(), you can specify additional parameters for
your model. They must also appear in the params list in the simulator meta
data or mosaik will reject them. In this case, we allow setting the initial
value init_val for the model instances.

For each entity, we create a new entity ID [1] and a model instance. We also
create a mapping (self.entities) from the entity ID to our model. For each
entity we create we also add a dictionary containing its ID and type to the
entities list which is returned to mosaik. In this example, it has num
entries for the model model, but it may get more complicated if you have,
e.g., hierarchical models.

[1]
Although entity IDs can be plain integers, it is advisable to use
something more meaningful to ease debugging and analysis.

step()

The step() method tells your simulator to perform a simulation step. It
receives its current simulation time, a dictionary with input values
from other simulators (if there are any), and the time until the simulator can
safely advance its internal time without creating a causality error. For
time-based simulators (as in our example) it can be safely ignored (it is
equal to the end of the simulation then). The method returns to mosaik the
time at which it wants to do its next step. For event-based and hybrid
simulators a next (self-)step is optional. If there is no next self-step, the
return value is None/null.

Note

The max_advance value is not necessarily used and is only for special use
cases where simulators can advance in time without expecting new inputs from
other simulators, e.g. for the integration of a communication simulation.

 def step(self, time, inputs, max_advance):
 self.time = time
 # Check for new delta and do step for each model instance:
 for eid, model_instance in self.entities.items():
 if eid in inputs:
 attrs = inputs[eid]
 for attr, values in attrs.items():
 new_delta = sum(values.values())
 model_instance.delta = new_delta

 model_instance.step()

 return time + 1 # Step size is 1 second

In this example, the inputs could be something like this:

{
 'Model_0': {
 'delta': {'src_id_0': 23},
 },
 'Model_1':
 'delta': {'src_id_1': 42},
 'val': {'src_id_1': 20},
 },
}

The inner dictionaries containing the actual values may contain multiple
entries if multiple source entities provide input for another entity. In
the case above, we have two source entities, ‘Model_0’ providing the
delta value to the destination entity (object of ExampleSim) and
‘Model_1’ providing the delta and val value to the destination entity
(object of ExampleSim). The source entitiy, ‘Model_0’ has the attribute
‘delta’ as the key to another nested dictionary which contains the
simulator id and its corresponding ‘delta’ value. Similarly the source
entity ‘Model_1’ has the attributes ‘delta’ and ‘val’ as the keys to two
other nested dictionaries which contain the simulator id and its
corresponding ‘delta’ and ‘val’ values.

The structure of the inputs dictionary created by mosaik is always the
same as depicted above, only the number of source entities (dependent on
the connections in the scenario (‘Model_0’ and ‘Model_1’ in our case))
and the number of attributes passed by the source entity varies. The
first key of the nested dictionary will be the source entity
(‘Model_1’), the following keys will be the attributes passed by this
source entity to the destination entity (‘delta’: {‘src_id_1’: 42},
‘val’: {‘src_id_1’: 20}).

The simulator receiving these inputs is responsible for aggregating them (e.g., by
taking their sum, minimum or maximum. Since we are not interested in the
source’s IDs, we convert that dict to a list with values.values() before we
calculate the sum of all input values.

After we converted the inputs to something that our simulator can work with,
we let it finally perform its next simulation step.

The return value time + 1 tells mosaik that we wish to perform the next
step in one second (in simulation time), as the time_resolution is 1.
(second per integer step). Instead of using a fixed (hardcoded) step size you
can easily implement any other stepping behavior.

get_data()

The get_data() call allows other simulators to get the values of the
delta and val attributes of our models (the attributes we listed in
the simulator meta data):

 def get_data(self, outputs):
 data = {}
 for eid, attrs in outputs.items():
 model = self.entities[eid]
 data['time'] = self.time
 data[eid] = {}
 for attr in attrs:
 if attr not in self.meta['models']['ExampleModel']['attrs']:
 raise ValueError('Unknown output attribute: %s' % attr)

 # Get model.val or model.delta:
 data[eid][attr] = getattr(model, attr)

 return data

The outputs parameter contains the query and may in our case look like this:

{
 'Model_0': ['delta', 'value'],
 'Model_1': ['value'],
}

The Outputs dictionary may contain multiple keys if multiple destination
entities ask for the output from the source entity. In this case we have
two destination entities ‘Model_0’ and ‘Model_1’ which are requesting
for the source attributes. ‘Model_0’ is requesting for the two source
attributes ‘delta’ and ‘value’, whereas ‘Model_1’ is requesting for 1
source attribute ‘value’. The structure of the Outputs dictionary
created by mosaik is always the same as depicted above, only the number
of destination entities (dependent on the connections in the scenario
(‘Model_0’ and ‘Model_1’ in our case)) and the number of attributes
requested by the destination entity varies.

In our implementation we loop over each entity ID for which data is requested.
We then loop over all requested attributes and check if they are valid. If so,
we dynamically get the requested value from our model instance via
getattr(obj, 'attr'). We store all values in the data dictionary and
return it when we are done.

The expected return value would then be:

{
 'Model_0': {'delta': 1, 'value': 24},
 'Model_1': {'value': 3},
}

Making it executable

The last step is adding a main() method to make our simulator executable
(e.g., via python -m simulator_mosaik HOST:PORT). The package
mosaik_api_v3 contains the method start_simulation() which creates
a socket, connects to mosaik and listens for requests from it. You just call it
in your main() and pass an instance of your simulator class to it:

def main():
 return mosaik_api_v3.start_simulation(ExampleSim())

if __name__ == '__main__':
 main()

Simulators running on different nodes than the mosaik instance are supported
explicitly with the mosaik Python-API v2.4 upward via the remote flag. A simulator
with the start_simulation() method in its main() can then be called e.g. via

python simulator_mosaik –r HOST:PORT

in the command line. The mosaik scenario, started
independently, can then connect to the simulator via the statement connect: HOST:PORT
in its “sim_config”
(

 Creating and running simple simulation scenarios

Creating and running simple simulation scenarios

We will now create a simple scenario with mosaik in which we use
a simple data collector to print some output from our simulation. That
means, we will instantiate a few ExampleModels and a data monitor. We will
then connect the model instances to that monitor and simulate that for some
time.

Configuration

You should define the most important configuration values for your simulation
as “constants” on top of your scenario file. This makes it easier to
see what’s going on and change the parameter values.

Two of the most important parameters that you need in almost every simulation
are the simulator configuration and the duration of your simulation:

Sim config
SIM_CONFIG: mosaik.SimConfig = {
 'ExampleSim': {
 'python': 'simulator_mosaik:ExampleSim',
 },
 'Collector': {
 'cmd': '%(python)s collector.py %(addr)s',
 },
}
END = 10 # 10 seconds

The sim config specifies which simulators are available and how to start
them. In the example above, we list our ExampleSim as well as Collector (the
names are arbitrarily chosen). For each simulator listed, we also specify how
to start it. (If you are using type checking, you can import SimConfig from
mosaik.scenario and change the first line to SIM_CONFIG: SimConfig = {,
instead.)

Since our example simulator is, like mosaik, written in Python 3, mosaik can
just import it and execute it in-process. The line 'python':
'simulator_mosaik:ExampleSim' tells mosaik to import the package
simulator_mosaik and instantiate the class ExampleSim from it.

The data collector will be started as external process which will communicate
with mosaik via sockets. The line 'cmd': '%(python)s collector.py %(addr)s'
tells mosaik to start the simulator by executing the command python
collector.py. Beforehand, mosaik replaces the placeholder %(python)s
with the current python interpreter (the same as used to execute the scenario
script) and %(addr)s with its actual socket address HOSTNAME:PORT so that
the simulator knows where to connect to.

The section about the Sim Manager explains all this in
detail.

Here is the complete file of the data collector. Take care of adding it to your example:

"""
A simple data collector that prints all data when the simulation finishes.

"""
import collections

import mosaik_api_v3

META = {
 'type': 'event-based',
 'models': {
 'Monitor': {
 'public': True,
 'any_inputs': True,
 'params': [],
 'attrs': [],
 },
 },
}

class Collector(mosaik_api_v3.Simulator):
 def __init__(self):
 super().__init__(META)
 self.eid = None
 self.data = collections.defaultdict(lambda:
 collections.defaultdict(dict))

 def init(self, sid, time_resolution):
 return self.meta

 def create(self, num, model):
 if num > 1 or self.eid is not None:
 raise RuntimeError('Can only create one instance of Monitor.')

 self.eid = 'Monitor'
 return [{'eid': self.eid, 'type': model}]

 def step(self, time, inputs, max_advance):
 data = inputs.get(self.eid, {})
 for attr, values in data.items():
 for src, value in values.items():
 self.data[src][attr][time] = value

 return None

 def finalize(self):
 print('Collected data:')
 for sim, sim_data in sorted(self.data.items()):
 print('- %s:' % sim)
 for attr, values in sorted(sim_data.items()):
 print(' - %s: %s' % (attr, values))

if __name__ == '__main__':
 mosaik_api_v3.start_simulation(Collector())

As its name suggests it collects all data it receives each step in a
dictionary (including the current simulation time) and simply prints
everything at the end of the simulation.

The World

The next thing we do is instantiating a World object. This object will
hold all simulation state. It knows which simulators are available and started,
which entities exist and how they are connected. It also provides most of the
functionality that you need for modelling your scenario:

Create World
world = mosaik.World(SIM_CONFIG)

To get access to mosaik’s world, we need to import mosaik at the beginning
of our scenario script. We also import mosaik.util to get access to some
helper methods later on.

demo_1.py
import mosaik
import mosaik.util

The scenario

Before we can instantiate any simulation models, we first need to start the
respective simulators. This can be done by calling World.start. It
takes the name of the simulator to start and, optionally, some simulator
parameters which will be passed to the simulators init() method. So lets
start the example simulator and the data collector:

Start simulators
examplesim = world.start('ExampleSim', eid_prefix='Model_')
collector = world.start('Collector')

We also set the eid_prefix for our example simulator. What gets returned by
World.start is called a model factory.

We can use this factory object to create model instances within the respective
simulator. In your scenario, such an instance is represented as an
Entity. The model factory presents the available models as if they
were classes within the factory’s namespace. So this is how we can create one
instance of our example model and one ‘Monitor’ instance:

Instantiate models
model = examplesim.ExampleModel(init_val=2)
monitor = collector.Monitor()

The init_val parameter that we passed to ExampleModel is the same as in
the create() method of our Sim API implementation.

Now, we need to connect the example model to the monitor. That’s how we tell
mosaik to send the outputs of the example model to the monitor.

Connect entities
world.connect(model, monitor, 'val', 'delta')

The method World.connect takes one entity pair – the source and the
destination entity, as well as a list of attributes or attribute tuples. If you
only provide single attribute names, mosaik assumes that the source and
destination use the same attribute name. If they differ, you can instead pass
a tuple like ('val_out', 'val_in').

Quite often, you will neither create single entities nor connect single entity
pairs, but work with large(r) sets of entities. Mosaik allows you to easily
create multiple entities with the same parameters at once. It also provides
some utility functions for connecting sets of entities with each other. So lets
create two more entities and connect them to our monitor:

Create more entities
more_models = examplesim.ExampleModel.create(2, init_val=3)
mosaik.util.connect_many_to_one(world, more_models, monitor, 'val', 'delta')

Instead of instantiating the example model directly, we called its static
method create() and passed the number of instances to it. It returns a list
of entities (two in this case). We used the utility function
mosaik.util.connect_many_to_one to connect all of them to the
database. This function has a similar signature as World.connect, but
the first two parameters are a world instance and a set (or list) of entities
that are all connected to the dest_entity.

Mosaik also provides the function mosaik.util.connect_randomly. This
method randomly connects one set of entities to another set. These two methods
should cover most use cases. For more special ones, you can implement custom
functions based on the primitive World.connect.

The simulation

In order to start the simulation, we call World.run and specify for
how long we want our simulation to run:

Run simulation
world.run(until=END)

Executing the scenario script will then give us the following output:

Collected data:
- ExampleSim-0.Model_0:
 - delta: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}
 - val: {0: 3, 1: 4, 2: 5, 3: 6, 4: 7, 5: 8, 6: 9, 7: 10, 8: 11, 9: 12}
- ExampleSim-0.Model_1:
 - delta: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}
 - val: {0: 4, 1: 5, 2: 6, 3: 7, 4: 8, 5: 9, 6: 10, 7: 11, 8: 12, 9: 13}
- ExampleSim-0.Model_2:
 - delta: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}
 - val: {0: 4, 1: 5, 2: 6, 3: 7, 4: 8, 5: 9, 6: 10, 7: 11, 8: 12, 9: 13}

Mosaik will also produce some diagnostic output along the lines of

2022-10-12 15:31:01.351 | INFO | mosaik.scenario:start:131 - Starting "ExampleSim" as "ExampleSim-0" ...
2022-10-12 15:31:01.352 | INFO | mosaik.scenario:start:131 - Starting "Collector" as "Collector-0" ...
INFO:mosaik_api_v3:Starting Collector ...
2022-10-12 15:31:01.430 | INFO | mosaik.scenario:run:381 - Starting simulation.
100%|██████████████████████████████████████| 10/10 [00:00<00:00, 1996.05steps/s]
2022-10-12 15:31:01.446 | INFO | mosaik.scenario:run:425 - Simulation finished successfully.

If you don’t want the progress bar, you can run the simulation with

world.run(until=END, print_progress=False)

instead. For even more progress bars, set print_progress='individual', instead.

Summary

This section introduced you to the basic of scenario creation in mosaik. For
more details you can check the guide to scenarios.

For your convenience, here is the complete scenario that we created in this
tutorial. You can use this for some more experiments before continuing with
this tutorial:

demo_1.py
import mosaik
import mosaik.util
End: Imports

Sim config
SIM_CONFIG: mosaik.SimConfig = {
 'ExampleSim': {
 'python': 'simulator_mosaik:ExampleSim',
 },
 'Collector': {
 'cmd': '%(python)s collector.py %(addr)s',
 },
}
END = 10 # 10 seconds
End: Sim config

Create World
world = mosaik.World(SIM_CONFIG)
End: Create World

Start simulators
examplesim = world.start('ExampleSim', eid_prefix='Model_')
collector = world.start('Collector')
End: Start simulators

Instantiate models
model = examplesim.ExampleModel(init_val=2)
monitor = collector.Monitor()
End: Instantiate models

Connect entities
world.connect(model, monitor, 'val', 'delta')
End: Connect entities

Create more entities
more_models = examplesim.ExampleModel.create(2, init_val=3)
mosaik.util.connect_many_to_one(world, more_models, monitor, 'val', 'delta')
End: Create more entities

Run simulation
world.run(until=END)

The next part of the tutorial will be about integrating control mechanisms into
a simulation.

 Adding a control mechanism to a scenario

Adding a control mechanism to a scenario

Now that we integrated our first simulator into mosaik and tested it in
a simple scenario, we should implement a control mechanism and mess around with our
example simulator a little bit.

As you remember, our example models had a value to which they added something
in each step. Eventually, their value will end up being very high. We’ll use
a multi-agent system to keep the values of our models in [-3, 3]. The agents
will monitor the current value of their respective models and when it reaches
-3/3, they will set delta to 1/-1 for their model.

Implementing the Sim API for control strategies is very similar to implementing
it for normal simulators. We start again by importing the mosaik_api_v3
package and defining the simulator meta data:

controller.py
"""
A simple demo controller.

"""
import mosaik_api_v3

META = {
 'type': 'event-based',
 'models': {
 'Agent': {
 'public': True,
 'params': [],
 'attrs': ['val_in', 'delta'],
 },
 },
}

We set the type of the simulator to ‘event-based’. As we have learned, this
has two main implications:

1. Whenever another simulator provides new input for the simulator, a step is
triggered (at the output time). So we don’t need to take care of the
synchronisation of the models and agents. As our example simulator is of type
time-based, it is only stepped at its self-defined times and will thus not
be triggered by (potential) outputs of the agents. It will receive any output
of the agents in its subsequent step.

2. The provision of output of event-based simulators is optional. So if there’s
nothing to report at a specific step, the attributes can (and should be) omitted
in the get_data’s return dictionary.

Our control mechanism will use agents to control other entities. The agent has
no parameters and two attributes, the input ‘val_in’ and the output ‘delta’.

Let’s continue and implement mosaik_api_v3.Simulator:

class Controller(mosaik_api_v3.Simulator):
 def __init__(self):
 super().__init__(META)
 self.agents = []
 self.data = {}
 self.time = 0

Again, nothing special is going on here. We pass our meta data dictionary to
our super class and set an empty list for our agents.

Because our agents don’t have an internal concept of time, we don’t need to take
care of the time_resolution of the scenario. And as there aren’t any simulator
parameters either, we don’t need to implement
init. The default implementation will return
the meta data, so there’s nothing we need to do in this case.

Implementing create is also straight forward:

 def create(self, num, model):
 n_agents = len(self.agents)
 entities = []
 for i in range(n_agents, n_agents + num):
 eid = 'Agent_%d' % i
 self.agents.append(eid)
 entities.append({'eid': eid, 'type': model})

 return entities

Every agent gets an ID like “Agent_*<num>*”. Because there might be multiple
create calls, we need to keep track of how many
agents we already created in order to generate correct entity IDs. We also
create a list of {‘eid’: ‘Agent_<num>’, ‘type’: ‘Agent’} dictionaries for
mosaik.

You may have noticed that we, in contrast to our example simulator, did not
actually instantiate any real simulation models this time. We just pretend to
do it. This okay, since we’ll implement the agent’s “intelligence” directly in
step:

 def step(self, time, inputs, max_advance):
 self.time = time
 data = {}
 for agent_eid, attrs in inputs.items():
 delta_dict = attrs.get('delta', {})
 if len(delta_dict) > 0:
 data[agent_eid] = {'delta': list(delta_dict.values())[0]}
 continue

 values_dict = attrs.get('val_in', {})
 if len(values_dict) != 1:
 raise RuntimeError('Only one ingoing connection allowed per '
 'agent, but "%s" has %i.'
 % (agent_eid, len(values_dict)))
 value = list(values_dict.values())[0]

The inputs arguments is a nested dictionary and will look like this:

{
 'Agent_0': {'val_in': {'ExampleSim-0.Model_0': -1}},
 'Agent_1': {'val_in': {'ExampleSim-0.Model_1': 1}},
 'Agent_2': {'val_in': {'ExampleSim-0.Model_2': 3}}
}

For each agent, there’s a dictionary with all input attributes (in this case
only ‘val_in’), containing the source entities (their full_id) with the
corresponding values as key-value pairs.

First we initialize an empty data dict that will contain the set-points
that our control mechanism is creating for the models of the example simulator.
We’ll fill this dict in the following loop. We iterate over all agents and
extract its input ‘val_in’; so values_dict is a dict containing the current
values of all models connected to that agent. In our example we only allow to
connect one model per agent, and fetch its value.

We now do the actual check:

 if value >= 3:
 delta = -1
 elif value <= -3:
 delta = 1
 else:
 continue

If the value is ≤ -3 or ≥ 3, we have to set a new delta value. Else, we don’t
need to do anything and can continue with a new iteration of the loop.

If we have a new delta, we add it to the data dict:

 data[agent_eid] = {'delta': delta}

After finishing the loop, the data dict may look like this:

{
 'Agent_0': {'delta': 1},
 'Agent_2': {'delta': -1},
}

Agent_0 sets the new delta = 1, and Agent_2 sets the new delta = -1.
Agent_1 did not set a new delta.

At the end of the step, we put the data dict to the class attribute self.data,
to make it accessible in the get_data method

 self.data = data

We return None to mosaik, as we don’t want to step ourself, but only when
the controlled models provide new values.

 return None

After having called step, mosaik requests the new set-points via the get_data
function. In principle we could just return the self.data dictionary, as we
already constructed that in the adequate format. For illustrative purposes we
do it manually anyhow. Additionally, if we do it like that, we can only send
back the attributes that are actually needed by (connected to) other
simulators:

 def get_data(self, outputs):
 data = {}
 for agent_eid, attrs in outputs.items():
 for attr in attrs:
 if attr != 'delta':
 raise ValueError('Unknown output attribute "%s"' % attr)
 if agent_eid in self.data:
 data['time'] = self.time
 data.setdefault(agent_eid, {})[attr] = self.data[agent_eid][attr]

 return data

Here is the complete code for our (very simple) controller / mutli-agent
system:

controller.py
"""
A simple demo controller.

"""
import mosaik_api_v3

META = {
 'type': 'event-based',
 'models': {
 'Agent': {
 'public': True,
 'params': [],
 'attrs': ['val_in', 'delta'],
 },
 },
}

class Controller(mosaik_api_v3.Simulator):
 def __init__(self):
 super().__init__(META)
 self.agents = []
 self.data = {}
 self.time = 0

 def create(self, num, model):
 n_agents = len(self.agents)
 entities = []
 for i in range(n_agents, n_agents + num):
 eid = 'Agent_%d' % i
 self.agents.append(eid)
 entities.append({'eid': eid, 'type': model})

 return entities

 def step(self, time, inputs, max_advance):
 self.time = time
 data = {}
 for agent_eid, attrs in inputs.items():
 delta_dict = attrs.get('delta', {})
 if len(delta_dict) > 0:
 data[agent_eid] = {'delta': list(delta_dict.values())[0]}
 continue

 values_dict = attrs.get('val_in', {})
 if len(values_dict) != 1:
 raise RuntimeError('Only one ingoing connection allowed per '
 'agent, but "%s" has %i.'
 % (agent_eid, len(values_dict)))
 value = list(values_dict.values())[0]

 if value >= 3:
 delta = -1
 elif value <= -3:
 delta = 1
 else:
 continue

 data[agent_eid] = {'delta': delta}

 self.data = data

 return None

 def get_data(self, outputs):
 data = {}
 for agent_eid, attrs in outputs.items():
 for attr in attrs:
 if attr != 'delta':
 raise ValueError('Unknown output attribute "%s"' % attr)
 if agent_eid in self.data:
 data['time'] = self.time
 data.setdefault(agent_eid, {})[attr] = self.data[agent_eid][attr]

 return data

def main():
 return mosaik_api_v3.start_simulation(Controller())

if __name__ == '__main__':
 main()

Next, we’ll create a new scenario to test our controller.

 Integrating a control mechanism

Integrating a control mechanism

The scenario that we’re going to create in this part of the tutorial will
be similar to the one we created before but incorporate the control mechanism
that we just created.

Again, we start by setting some configuration values and creating a simulation
world:

demo_2.py
import mosaik
import mosaik.util

Sim config
SIM_CONFIG = {
 'ExampleSim': {
 'python': 'simulator_mosaik:ExampleSim',
 },
 'ExampleCtrl': {
 'python': 'controller:Controller',
 },
 'Collector': {
 'cmd': '%(python)s collector.py %(addr)s',
 },
}
END = 10 # 10 seconds

Create World
world = mosaik.World(SIM_CONFIG)

We added ExampleCtrl to the sim config and let it be executed in-process
with mosaik.

We can now start one instance of each simulator:

Start simulators
with world.group():
 examplesim = world.start('ExampleSim', eid_prefix='Model_')
 examplectrl = world.start('ExampleCtrl')
collector = world.start('Collector')

We’ll create three model instances, the same number of agents, and one database:

Instantiate models
models = [examplesim.ExampleModel(init_val=i) for i in range(-2, 3, 2)]
agents = examplectrl.Agent.create(len(models))
monitor = collector.Monitor()

We use a list comprehension [https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions] to create three model instances with individual
initial values (-2, 0 and 2). For instantiating the same number of agent
instances we use create() which does the same as a list comprehension but
is a bit shorter.

Finally we establish pairwise bi-directional connections between the models
and the agents:

Connect entities
for model, agent in zip(models, agents):
 world.connect(model, agent, ('val', 'val_in'))
 world.connect(agent, model, 'delta', weak=True)

The important thing here is the weak=True argument that we pass to the
second connection. This tells mosaik how to resolve the cyclic dependency, i.e.
which simulator should be stepped first in case that both simulators have a
scheduled step at the same time. (In our example this will not happen, as the
agents are only stepped by the models’ outputs.)

Finally, we can connect the models and the agents to the monitor and run the simulation:

Connect to monitor
mosaik.util.connect_many_to_one(world, models, monitor, 'val', 'delta')
mosaik.util.connect_many_to_one(world, agents, monitor, 'delta')

Run simulation
world.run(until=END)

In the printed output of the collector, you can see two important things: The
first is that the agents only provide output when the delta of the controlled
model is to be changed. And second, that the new delta is set at the models’
subsequent step after it has been derived by the agents.

Collected data:
- ExampleCtrl-0.Agent_0:
 - delta: {2: -1, 5: 1, 8: -1}
- ExampleCtrl-0.Agent_1:
 - delta: {1: -1, 4: 1, 7: -1}
- ExampleCtrl-0.Agent_2:
 - delta: {0: -1, 3: 1, 6: -1, 9: 1}
- ExampleSim-0.Model_0:
 - delta: {0: 1, 1: 1, 2: -1, 3: -1, 4: -1, 5: 1, 6: 1, 7: 1, 8: -1, 9: -1}
 - val: {0: 0, 1: 2, 2: 2, 3: 0, 4: -2, 5: -2, 6: 0, 7: 2, 8: 2, 9: 0}
- ExampleSim-0.Model_1:
 - delta: {0: 1, 1: -1, 2: -1, 3: -1, 4: 1, 5: 1, 6: 1, 7: -1, 8: -1, 9: -1}
 - val: {0: 2, 1: 2, 2: 0, 3: -2, 4: -2, 5: 0, 6: 2, 7: 2, 8: 0, 9: -2}
- ExampleSim-0.Model_2:
 - delta: {0: -1, 1: -1, 2: -1, 3: 1, 4: 1, 5: 1, 6: -1, 7: -1, 8: -1, 9: 1}
 - val: {0: 2, 1: 0, 2: -2, 3: -2, 4: 0, 5: 2, 6: 2, 7: 0, 8: -2, 9: -2}

This is the complete scenario:

demo_2.py
import mosaik
import mosaik.util

Sim config
SIM_CONFIG = {
 'ExampleSim': {
 'python': 'simulator_mosaik:ExampleSim',
 },
 'ExampleCtrl': {
 'python': 'controller:Controller',
 },
 'Collector': {
 'cmd': '%(python)s collector.py %(addr)s',
 },
}
END = 10 # 10 seconds

Create World
world = mosaik.World(SIM_CONFIG)
End: Create World

Start simulators
with world.group():
 examplesim = world.start('ExampleSim', eid_prefix='Model_')
 examplectrl = world.start('ExampleCtrl')
collector = world.start('Collector')
End: Start simulators

Instantiate models
models = [examplesim.ExampleModel(init_val=i) for i in range(-2, 3, 2)]
agents = examplectrl.Agent.create(len(models))
monitor = collector.Monitor()
End: Instantiate models

Connect entities
for model, agent in zip(models, agents):
 world.connect(model, agent, ('val', 'val_in'))
 world.connect(agent, model, 'delta', weak=True)
End: Connect entities

Connect to monitor
mosaik.util.connect_many_to_one(world, models, monitor, 'val', 'delta')
mosaik.util.connect_many_to_one(world, agents, monitor, 'delta')

Run simulation
world.run(until=END)

Congratulations, you have mastered the mosaik tutorial. The following sections
provide a more detailed description of everything you learned so far.

 Same-time loops

Same-time loops

Important use cases for same-time loops can be the initialization of simulation and communication between controllers or agents.
As the scenario definition has to provide initialization values for cyclic data-flows and every cyclic data-flow will lead to an incrementing simulation time, it may take some simulation steps until all simulation components are in a stable state, especially, for simulations consisting of multiple physical systems.
The communication between controllers or agents usually takes place at a different time scale than the simulation of the technical systems.
Thus, same-time loops can be helpful to model this behavior in a realistic way.

To give an example of same-time loops in mosaik, the previously shown scenario is extended with a master controller, which takes control over the other controllers.
The communication between these two layers of controllers will take place in the same step without incrementing the simulation time.
The code of the previous scenario is used as a base and extended as shown in the following.

Master controller

The master controller bases on the code of the controller of the previous scenario.
The first small change for the master controller is in the meta data dictionary, where new attribute names are defined.
The ‘delta_in’ represent the delta values of the controllers, which will be limited by the master controller.
The results of this control function will be returned to the controllers as ‘delta_out’.

META = {
 'type': 'event-based',
 'models': {
 'Agent': {
 'public': True,
 'params': [],
 'attrs': ['delta_in', 'delta_out'],
 },
 },
}

__init__ is extended with self.cache for storing the inputs and self.time for storing the current simulation time, which is initialized with 0.

class Controller(mosaik_api_v3.Simulator):
 def __init__(self):
 super().__init__(META)
 self.agents = []
 self.data = {}
 self.cache = {}
 self.time = 0

The step is changed, so that first the current time is updated in the self.time variable.
Also the control function is changed.
The master controller gets the delta output of the other controllers as ‘delta_in’ and stores the last value of each controller in the self.cache.
This is needed, because the controllers are event-based and the current values are only sent if the values changes.
The control function of the master controller limits the sum of all deltas to be < 1 and > -1.
If these limits are exceeded the delta of all controllers will be overwritten by the master controller with 0 and sent to the other controller as ‘delta_out’.

 def step(self, time, inputs, max_advance):
 self.time = time
 data = {}
 for agent_eid, attrs in inputs.items():
 values_dict = attrs.get('delta_in', {})
 for key, value in values_dict.items():
 self.cache[key] = value

 if sum(self.cache.values()) < -1 or sum(self.cache.values()) > 1:
 data[agent_eid] = {'delta_out': 0}

 self.data = data

 return None

Additionally, two small changes in the get_data method were done.
First, the name was updated to ‘delta_out’ in the check for the correct attribute name.
Second, the current time, which was stored previously in the step, is added to the output cache dictionary.
This informs mosaik that the simulation should start or stay in a same-time loop if also output data for ‘delta_out’ is provided.

 def get_data(self, outputs):
 data = {}
 for agent_eid, attrs in outputs.items():
 for attr in attrs:
 if attr != 'delta_out':
 raise ValueError('Unknown output attribute "%s"' % attr)
 if agent_eid in self.data:
 data['time'] = self.time
 data.setdefault(agent_eid, {})[attr] = self.data[agent_eid][attr]

 return data

Controller

The controller has to be extended to handle the ‘delta_out’ from the master controller as input.
If it receives an input value for the attribute ‘delta’, it will not calculate a new delta value, but use the one from the master controller.

 def step(self, time, inputs, max_advance):
 self.time = time
 data = {}
 for agent_eid, attrs in inputs.items():
 delta_dict = attrs.get('delta', {})
 if len(delta_dict) > 0:
 data[agent_eid] = {'delta': list(delta_dict.values())[0]}
 continue

The same-time loop in this scenario will always be finished after the second iteration, because the master controller will overwrite the deltas of the controller and will get back zeros as ‘delta_in’.
Thus, it will produce no output in the second iteration and the same-time loop will be finished.

Scenario

This scenario is based on the previous scenario.
In the following description only the changes are explained, but the full code is shown.
The updated controller and the new master controller are added to the sim config of the scenario.

demo_3.py
import mosaik
import mosaik.util

Sim config. and other parameters
SIM_CONFIG = {
 'ExampleSim': {
 'python': 'simulator_mosaik:ExampleSim',
 },
 'ExampleCtrl': {
 'python': 'controller_demo_3:Controller',
 },
 'ExampleMasterCtrl': {
 'python': 'controller_master:Controller',
 },
 'Collector': {
 'cmd': '%(python)s collector.py %(addr)s',
 },
}
END = 6 # 10 seconds

Create World
world = mosaik.World(SIM_CONFIG)

The master controller is also started and initialized.
The controllers get different ‘init_val’ values compared to the previous scenario.
Here, it is changed to (-2, 0, -2) to have the right timing to get into the same-time loop.

Start simulators
with world.group():
 examplesim = world.start('ExampleSim', eid_prefix='Model_')
 examplectrl = world.start('ExampleCtrl')
 examplemasterctrl = world.start('ExampleMasterCtrl')
collector = world.start('Collector')

Instantiate models
models = [examplesim.ExampleModel(init_val=i) for i in (-2, 0, -2)]
agents = examplectrl.Agent.create(len(models))
master_agent = examplemasterctrl.Agent.create(1)
monitor = collector.Monitor()

The ‘delta’ outputs of the controllers are connected to the new master controller and the ‘delta_out’ of the master controller is connected to the respective controller.
The weak=True argument defines, that the connection from the controllers to the master controller will be the first to be executed by mosaik.

Connect entities
for model, agent in zip(models, agents):
 world.connect(model, agent, ('val', 'val_in'))
 world.connect(agent, model, 'delta', weak=True)

for agent in agents:
 world.connect(agent, master_agent[0], ('delta', 'delta_in'))
 world.connect(master_agent[0], agent, ('delta_out', 'delta'), weak=True)

mosaik.util.connect_many_to_one(world, models, monitor, 'val', 'delta')
mosaik.util.connect_many_to_one(world, agents, monitor, 'delta')
world.connect(master_agent[0], monitor, 'delta_out')

Run simulation
world.run(until=END)

The printed output of the collector shows the states of the different simulators.
The collector just shows the final result of the same-time loop and not the steps during the loop.
It can be seen that the ‘delta’ of ‘Agent_1’ changes to -1 at time step 2 and at time step 4 all ‘delta’ attributes are set to 0 by the master controller.

Collected data:
- ExampleCtrl-0.Agent_0:
 - delta: {3: 0}
- ExampleCtrl-0.Agent_1:
 - delta: {2: -1, 3: 0}
- ExampleCtrl-0.Agent_2:
 - delta: {3: 0}
- ExampleMasterCtrl-0.Master_Agent_0:
 - delta_out: {3: 0}
- ExampleSim-0.Model_0:
 - delta: {0: 1, 1: 1, 2: 1, 3: 0, 4: 0, 5: 0}
 - val: {0: -1, 1: 0, 2: 2, 3: 2, 4: 2, 5: 2}
- ExampleSim-0.Model_1:
 - delta: {0: 1, 1: 1, 2: -1, 3: 0, 4: 0, 5: 0}
 - val: {0: 1, 1: 2, 2: 2, 3: 0, 4: 0, 5: 0}
- ExampleSim-0.Model_2:
 - delta: {0: 1, 1: 1, 2: 1, 3: 0, 4: 0, 5: 0}
 - val: {0: -1, 1: 0, 2: 2, 3: 2, 4: 2, 5: 2}

A visualization of the execution graph shows the data flows in the simulation.
For the first two time steps, only the controllers are executed, as they do not provide any output for ‘delta’.
Thus, the master controller was not stepped and the simulation was proceeded directly with the next simulation time step.
At simulation time 2, the master controller is stepped, but as the sum of delta values is not exceeding the limits no control action takes place.
At simulation time 4, the master controller is stepped again and this time sends back a value to the controllers to limit their ‘delta’ value.
It can be seen, that the controllers are stepped a second time within the same simulation time and send data again to the master controller.
After this second step of the master controller, it does not send an output again and the simulation proceeds to simulation time 5, where the same-time loop occures again.

[image: Scheduling of demo 3]

Scheduling of demo 3.

 Set external events

Set external events

This tutorial gives an example on how to set external events for integrating unforeseen
interactions of an external system in soft real-time simulation with rt_factor=1.0.
A typical use case for this feature would be Human-in-the-Loop simulations to support human interactions, e.g., control actions.
In mosaik, such external events can be implemented via the the asynchronous set_event method.
These events will then be scheduled for the next simulation time step.

To give an example of external events in mosaik, a new scenario is created that includes a controller to set external events.
In addition to the controller, a graphical user interface (GUI) is implemented and started in a subprocess for external control actions by the user.

The example code and additional requirements are shown in the following.

Requirements

First of all, we need to install some additional requirements within the virtual environment
(see installation guide for setting up a virtual environment)

	pyzmq (https://zeromq.org/languages/python/)

	PyQt5 (https://pypi.org/project/PyQt5/)

$ pip install pyzmq PyQt5

Set-event controller

Next, we need to create a new python module for the set-event controller, e.g., controller_set_event.py.

In the meta data dictionary of the set-event controller, we specify that this is an event-based simulator.

controller_set_event.py

import sys
import zmq
import threading
import math

import mosaik_api_v3

META = {
 'type': 'event-based',
 'set_events': True,
 'models': {
 'Controller': {
 'public': True,
 'params': [],
 'attrs': [],
 },
 },
}

The set-event controller subscribes to external events from the GUI via a zeromq [https://zeromq.org] subscriber socket
using the publish-subscribe pattern [https://zeromq.org/socket-api/#publish-subscribe-pattern].
Herefore, a listener thread is created which receives external event messages from the GUI.
More information about the listener thread can be found in the next section.

class Controller(mosaik_api_v3.Simulator):
 def __init__(self):
 super().__init__(META)
 self.data = {}
 self.time = 0
 self.eid = None
 self.thread = None
 self.initial_timestamp = 0
 self.once = True
 self.context = zmq.Context()

 # Subscribe to external events from the GUI
 self.subscriber = self.context.socket(zmq.SUB)
 self.subscriber.connect("tcp://localhost:5563")
 self.subscriber.setsockopt(zmq.SUBSCRIBE, b"B")

 # Listener THREAD
 self.thread = listen_to_external_events(self)

 def create(self, num, model):
 if num > 1 or self.eid is not None:
 raise RuntimeError('Can only create one instance of Controller.')

 self.eid = 'Controller_set_event'
 return [{'eid': self.eid, 'type': model}]

 def finalize(self):
 self.thread.join(0)
 sys.exit()

In order to set the event for the next time step, it is necessary to determine the current simulation time in wall clock time.
For this, we need to store the initial timestamp in step once for the first simulation step.

 def step(self, time, inputs, max_advance):
 # Needed in listener thread to determine the current simulation time in wall clock time.
 if self.once:
 self.initial_timestamp = self.mosaik.world.env.now
 self.once = False

 self.time = time
 print(f"In step at time {self.time}")
 print(f"max_advance {max_advance}")

 return None

Listener thread

The listener thread can be included in the same file as the set-event controller: controller_set_event.py.

The object of the controller class needs to be passed as a parameter to the listen_to_external_events function,
which is called as a thread via the defined decorator @threaded.
The listener thread listens to external event messages from the GUI. Once a message arrives,
the listener thread calls the set_event method to set an external event for the next simulation step in mosaik.

def threaded(fn):
 def wrapper(*args, **kwargs):
 thread = threading.Thread(target=fn, args=args, kwargs=kwargs, daemon=True)
 thread.start()
 return thread
 return wrapper

@threaded
def listen_to_external_events(controller):
 while True:
 try:
 # Receive external event message from GUI
 [address, contents] = controller.subscriber.recv_multipart(zmq.NOBLOCK)
 print(f"[{address}] {contents}")

 current_timestamp = controller.mosaik.world.env.now
 real_time = math.ceil(current_timestamp - controller.initial_timestamp)
 event_time = real_time + 1
 print(f"Current simulation time: {real_time}")

 if controller.time < event_time < controller.mosaik.world.until:
 print(f"Set external Event at time {event_time}")
 # Set external event in mosaik via asynchronous call
 controller.mosaik.set_event(event_time)

 except zmq.ZMQError as e:
 if e.errno == zmq.EAGAIN:
 # state changed since poll event
 pass
 else:
 raise

Graphical user interface

For the GUI, we create a new python module, e.g., gui_button.py.

The GUI is created with PyQt5 [https://pypi.org/project/PyQt5/] and provides a button to set external events in mosaik every time we click on it.
To enable the set-event controller to perform this control action, a zeromq [https://zeromq.org] publisher socket is used
to send a message to the controller’s subscriber that the button has been clicked.

[image: GUI for setting external events in mosaik]

gui_button.py

import sys
import zmq
from PyQt5 import QtWidgets
from PyQt5.QtWidgets import QApplication, QMainWindow

class PushButtonWindow(QMainWindow):
 def __init__(self):
 super(PushButtonWindow,self).__init__()
 self.button = None
 self.context = zmq.Context()

 # For external events
 self.publisher = self.context.socket(zmq.PUB)
 self.publisher.bind("tcp://*:5563")

 def button_clicked(self):
 self.publisher.send_multipart([b"B", b"Push button was clicked!"])

 def create(self):
 self.setWindowTitle("MOSAIK 3.0 - External Events")

 self.button = QtWidgets.QPushButton(self)
 self.button.setText("Click me to set an external event!")
 self.button.clicked.connect(self.button_clicked)

 # Set the central widget of the Window.
 self.setCentralWidget(self.button)

def main():
 app = QApplication(sys.argv)
 window = PushButtonWindow()
 window.create()
 window.show()
 sys.exit(app.exec_())

if __name__ == "__main__":
 main()

Scenario

Next, we need to create a new python script for the external events scenario, e.g., demo_4.py.

For this scenario, the set-event controller is added to the SIM_CONFIG of the scenario.

demo_4.py
import subprocess

import mosaik
import mosaik.util

SIM_CONFIG = {
 'Controller': {
 'python': 'controller_set_event:Controller',
 },
}

END = 60 # 60 seconds

Create World
world = mosaik.World(SIM_CONFIG)

The set-event controller is started and initialized. Here, an initial event is added to the set-event controller
so that the controller is executed at time=0 to set the initial timestamp. This is needed for the determination of the current simulation time.

Start simulators
controller = world.start('Controller')

Instantiate models
external_event_controller = controller.Controller()
world.set_initial_event(external_event_controller.sid)

The GUI is started in a subprocess and must be manually closed after the simulation is completed.

Start GUI in a subprocess
proc = subprocess.Popen(['python', 'gui_button.py'])

In order to run the simulation scenario in soft real-time, the rt_factor is set to 1.0.

Run simulation in real-time
world.run(until=END, rt_factor=1.0)

Finally, we can run the scenario script as follows:

$ python demo_4.py

The printed output shows when the external events are triggered (button was clicked) and executed during simulation.

Starting "Controller" as "Controller-0" ...
WARNING: Controller-0 has no connections.
Starting simulation.
In step at time 0
max_advance 60
Simulation too slow for real-time factor 1.0 - 9.655498433858156e-05s behind time.
[b'B'] b'Push button was clicked!'
Current simulation time: 11
Set external Event at time 12
In step at time 12
max_advance 60
Simulation too slow for real-time factor 1.0 - 0.000688756990712136s behind time.
[b'B'] b'Push button was clicked!'
Current simulation time: 16
Set external Event at time 17
In step at time 17
max_advance 60
Simulation too slow for real-time factor 1.0 - 0.0013458110042847693s behind time.
[b'B'] b'Push button was clicked!'
Current simulation time: 26
Set external Event at time 27
In step at time 27
max_advance 60
Simulation too slow for real-time factor 1.0 - 0.0013047059765085578s behind time.
[b'B'] b'Push button was clicked!'
Current simulation time: 29
Set external Event at time 30
In step at time 30
max_advance 60
Simulation too slow for real-time factor 1.0 - 0.0019755829707719386s behind time.
[b'B'] b'Push button was clicked!'
Current simulation time: 33
Set external Event at time 34
In step at time 34
max_advance 60
Simulation too slow for real-time factor 1.0 - 0.0011994789820164442s behind time.
Simulation finished successfully.

 Connecting mosaik and Odysseus

Connecting mosaik and Odysseus

Odysseus [http://odysseus.informatik.uni-oldenburg.de] is
a framework for in-memory data stream management that is designed for
online processing of big data. Large volumes of data such as continuously
occurring events or sensor data can be processed in real time. In combination
with mosaik Odysseus can be used to process, visualise and store the results of
mosaik during a simulation.

In this first part of the tutorial we cover the two ways to connect mosaik and
Odysseus, the second part is about how
to use Odysseus to process, visualize and store simulation data.

Note

Connecting mosaik and Odysseus works mosaik >= 3.0

Note

Connecting mosaik and Odysseus works only with mosaik >= 3.0

You can choose between two different solutions to connect mosaik and Odysseus.
Both have their advantages and disadvantages and therefore, the right choice depends on your use case.
We recommend to use the SimAPI version for beginners.

No matter which connection we use, we first have to
download [https://odysseus.informatik.uni-oldenburg.de/downloads] Odysseus Server and Studio Client.
For the first start of Odysseus Studio the default user “System” and password “manager” have to be used,
the tenant can be left empty.

Connecting via mosaik protocol handler

The easiest way to connect to mosaik is to use the mosaik protocol handler in
Odysseus, which is available as installable feature in Odysseus Studio. It uses
the mosaik API through remote procedure calls (RPC) and offers a close coupling
of mosaik and Odysseus. With this, a blocked simulation in mosaik or a blocked
processing in Odysseus will block the other system as well. If this is a problem
in your use case, you should look in the section Connecting via ZeroMQ.

First we have to install the mosaik feature [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/How+to+install+new+features]
from the incubcation site in odysseus, which can be found in the Odysseus Wrapper Plugins.

After installing the feature we create a new Odysseus project and in the
project a new Odysseus script file (more information on Odysseus projects and script files can be found in this
tutorial [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Simple+Query+Processing]).
To use mosaik as source we can
use the mosaik operator which contains a standard configuration of mandatory parameters.
The script-code in the Odysseus query language PQL [https://wiki.odysseus.informatik.uni-oldenburg.de/pages/viewpage.action?pageId=4587829]
looks like this:

#PARSER PQL
#METADATA TimeInterval
#QUERY
mosaikCon := MOSAIK({SOURCE = 'mosaik', type='simapi'})

This is for the standard configuration. If you want to change something, for example
to use another port, you need a more detailed configuration:

#PARSER PQL
#METADATA TimeInterval
#QUERY
mosaikCon1 := ACCESS({TRANSPORT = 'TCPServer',
 PROTOCOL = 'mosaik',
 SOURCE = 'mosaik',
 DATAHANDLER = 'KeyValueObject',
 WRAPPER = 'GenericPush',
 OPTIONS = [
 ['port', '5555'],
 ['mosaikPort', '5554'],
 ['byteorder', 'LITTLE_ENDIAN']
]})

As we can see the protocol ‘mosaik’ is chosen. When the query is started, the mosaik
protocol handler in Odysseus opens a TCP server for receiving data from mosaik.

Before we can receive data, we have to adapt our mosaik scenario.
Here we take the mosaik-demo [https://gitlab.com/mosaik/examples/mosaik-demo/] as an example. The Odysseus simulator is treated
just like any other component in mosaik. It has to be added to the SIM_CONFIG parameter.
For the connection to the simulator the connect command is used and the IP
address and port of Odysseus have to be specified:

sim_config = {
 'Odysseus': {
 'connect': '127.0.0.1:5554',
 }

After that, we have to initialize the simulator and connect it to all components whose data we want to revceive in Odysseus.
For the mosaik-demo, we have to add the following lines of code to the scenario definition:

 # Start simulators
 odysseusModel = world.start('Odysseus', step_size=60*15)

 # Instantiate models
 odysseus = odysseusModel.Odysseus.create(1)
 ody = odysseus[0]

 # Connect entities
 connect_many_to_one(world, nodes, ody, 'P', 'Vm')
 connect_many_to_one(world, houses, ody, 'P_out')
 connect_many_to_one(world, pvs, ody, 'P')

Now we have set up everything to receive mosaiks data in Odysseus.
To begin transfering data we have to start first the query in Odysseus and then the simulation in mosaik.

For more information on how to use Odysseus visit part two.

Connecting via ZeroMQ

In contrast to the close coupling via mosaik protocol handler the coupling via
ZeroMQ [https://zeromq.org/] is more loose.
Mosaik sends all data as data stream with ZeroMQ and Odysseus can even be closed
and restarted during the simulation without affecting mosaik.
This behaviour holds the risk of loosing data so it should only be used if this
doesn’t cause problems.

First we have to install the following features [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/How+to+install+new+features]
for Odysseus from incubation site:

	Odysseus Wrapper Plugins / Zero MQ

	Odysseus Wrapper Plugins / mosaik (only if you want to use the mosaik operator)

And from the update site:

	Odysseus Odysseus_core Plugins / Json Wrapper

After installing the features we create a new Odysseus project
and in the project a new Odysseus script file.
The messages sent by mosaik are formatted in JSON format and sent via ZeroMQ.
So we have to choose the corresponding ZeroMQ transport handler and JSON protocol handler:

#PARSER PQL
#METADATA TimeInterval
#QUERY
mosaikCon3 := ACCESS({TRANSPORT = 'ZeroMQ',
 PROTOCOL = 'JSON',
 SOURCE = 'mosaik',
 DATAHANDLER = 'KeyValueObject',
 WRAPPER = 'GenericPush',
 OPTIONS = [
 ['host', '127.0.0.1'],
 ['readport', '5558'],
 ['writeport', '5559'],
 ['byteorder', 'LITTLE_ENDIAN']
]})

If you use the standard configurtion you can use the short version (feature “wrapper / mosaik” has to be installed):

#PARSER PQL
#METADATA TimeInterval
#QUERY
mosaikCon2 := MOSAIK({SOURCE = 'mosaik', type='zeromq'})

After setting up Odysseus we have to install the mosaik-zmq adapter in our mosaik virtualenv.
It is available on GitLab [https://gitlab.com/mosaik/mosaik-zmq] and PyPI.
To install it we have to activate our mosaik virtualenv and execute (if there are errors during installation have a look in the
readme [https://gitlab.com/mosaik/mosaik-zmq]):

pip install mosaik-zmq

The mosaik-zmq adapter is treated in mosaik like any other component of the simulation.
If we use the mosaik demo, we have to add the new simulator to
the SIM_CONFIG parameter:

sim_config = {
 'ZMQ': {
 'cmd': 'mosaik-zmq %(addr)s',
 },

Also we have to initialize the ZeroMQ simulator and connect it to other components:

 # Start simulators
 zmqModel = world.start('ZMQ', step_size=15*60, duration=END)

 # Instantiate models
 zmq = zmqModel.Socket(host='tcp://*:', port=5558, socket_type='PUB')

 # Connect entities
 connect_many_to_one(world, nodes, zmq, 'P', 'Vm')
 connect_many_to_one(world, houses, zmq, 'P_out')
 connect_many_to_one(world, pvs, zmq, 'P')

For more information on how to use Odysseus visit part two.

 Using Odysseus to process, visualize and store simulation data

Using Odysseus to process, visualize and store simulation data

This tutorial will give some examples on how you can use Odysseus to process,
visualize and store the data from mosaik. More information about connecting
mosaik and Odysseus can be found in the first part of the
tutorial and more about Odysseus in general can be found in its
documentation [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS].
If you have no experience with Odysseus you should first visit the tutorials in
its documentation. Simple query processing [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Simple+Query+Processing]
and selection, projection and map [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Selection%2C+Projection+and+Map]
should explain the basics.

Processing

Mosaik sends data in JSON format and so the key-value-object has to be used as datatype for receiving in Odysseus.
But most operators in Odysseus are based on relational tuples with a fixed schema,
so it can be useful to transform arriving key-value objects to relational tuples.
For this the totuple [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/ToTuple+operator] operator can be used.
It creates relational tuples with the given attributes and omitts all data, which is not included in the schema:

tuples = TOTUPLE({
 SCHEMA = [
 ['odysseus_0.Vm.PyPower-0.0-tr_sec', 'Double'],
 ['odysseus_0.Vm.PyPower-0.0-node_b1', 'Double'],
 ['odysseus_0.Vm.PyPower-0.0-node_b2', 'Double'],
 ['odysseus_0.Vm.PyPower-0.0-node_b3', 'Double'],
 ['odysseus_0.Vm.PyPower-0.0-node_b4', 'Double'],
 ['timestamp', 'STARTTIMESTAMP']
],
 TYPE = 'mosaik'},
 mosaikCon)

For better handling we can rename the attributes with the rename [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Rename+operator] operator:

renamedTuples = RENAME({aliases =
 ['tr_sec_Vm', 'node1_Vm', 'node2_Vm', 'node3_Vm', 'node4_Vm', 'timestamp']
 }, tuples)

We can also add computations to the data with a map [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Map+operator] operator.
The expressions parameter contains first the computation and second the new name for every attribute.
In this example the deviation of voltage to the nominal voltage of 230 V is calculated (more information about the offered functions can be found here [http://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/MEP%3A+Functions+and+Operators]):

voltageDeviation = MAP({EXPRESSIONS = [
 ['abs(230 - tr_sec_Vm)', 'dev_tr_sec_Vm'],
 ['abs(230 - Node1_Vm)', 'dev_Node1_Vm'],
 ['abs(230 - Node2_Vm)', 'dev_Node2_Vm'],
 ['abs(230 - Node3_Vm)', 'dev_Node3_Vm'],
 ['abs(230 - Node4_Vm)', 'dev_Node4_Vm']
]}, renamedTuples)

By using the aggregate [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Aggregate+%28and+Group%29+operator]
operator we are able to calculate e.g. the average values.
We have to add an timewindow [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/TimeWindow]
operator first to have the right timestamps for aggregating.

windowedTuples = TIMEWINDOW({SIZE = [5, 'MINUTES']}, voltageDeviation)
aggregatedTuples = AGGREGATE({
 AGGREGATIONS = [
 ['AVG', 'dev_tr_sec_Vm', 'AVG_dev_tr_sec_P'],
 ['AVG', 'dev_Node1_Vm', 'AVG_dev_Node1_P'],
 ['AVG', 'dev_Node2_Vm', 'AVG_dev_Node2_P'],
 ['AVG', 'dev_Node3_Vm', 'AVG_dev_Node3_P'],
 ['AVG', 'dev_Node4_Vm', 'AVG_dev_Node4_P']
]},
 windowedTuples)

Visualisation

To visualize data in Odysseus dashboards can be used, which can contain different graphs.
For the data stream shown in the section above an exemplary dashboard could look like the following picture:

[image: visualisation of simulation data in Odysseus]More information about dashboards in Odysseus can be found in the documentation [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Dashboard+Feature].

Storing

If we want to save the results of our Odysseus query, we can use the sender [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Sender+operator] operator to export it, e.g. to a csv file:

send = SENDER({
 SINK='writeCSV',
 transport='File',
 wrapper='GenericPush',
 protocol='CSV',
 dataHandler='Tuple',
 options=[
 ['filename','${WORKSPACEPROJECT}\output2.csv']
]}, aggregatedTuples)

Odysseus also offers adapters to store the processed data to different databases (e.g. mysql, postgres and oracle).
More details can be found here [https://wiki.odysseus.informatik.uni-oldenburg.de/display/ODYSSEUS/Database+Feature].

 Integrating a Model in Java

Integrating a Model in Java

What do we do if we want to connect a simulator to mosaik which ist written in Java? In this tutorial
we will describe how to create a simple model in Java and integrate it into mosaik using the
mosaik-Java high level API. We will
do this with the help of our simple model from the Python tutorial,
i. e. we will try to replicate the first part of the Python tutorial as close as possible.

Getting the Java API

You can add the java package via maven or gradle, following the instructions at the mosaik-java-API package repository [https://gitlab.com/mosaik/mosaik-api-java/-/packages/4477777].

If you want to compile the jar yourself, you have to get the sources of the mosaik-java-API for Java [https://gitlab.com/mosaik/mosaik-api-java]
which is provided on Gitlab. Clone it and put it in the development environment of your choice.

Creating the model

Next we create a Java class for our model. Our example model has exact the same behaviour
as our simple model in the Python tutorial. To distinguish it
from the Python-model we call it JModel. The only difference to the Python-model
is that in Java we need two constructors (with and without init value) and getter
and setter methods to access the variables val and delta.

class JModel {
 private float val;
 private float delta = 1;

 public JModel() {
 this.val = 0;
 }

 public JModel(float initVal) {
 this.val = initVal;
 }

 public float get_val() {
 return this.val;
 }

 public float get_delta() {
 return this.delta;
 }

 public void set_delta(float delta) {
 this.delta = delta;
 }

 public void step() {
 this.val += this.delta;
 }
}

Creating the simulator

A simulator provides the functionality that is necessary to manages instances of our model and to
execute the models. We need a method addModel to create instances of our model and an ArrayList
models to store them. The step method executes a simulation for each model instance. To access
the values and deltas we need getter and setter methods. In our example the class
implementing these functionalities is called JSimulator.

class JSimulator {
 private final ArrayList<JModel> models;

 public JSimulator() {
 	this.models = new ArrayList<JModel>();
 }

 public void add_model(Number init_val) {
 JModel model;
 if (init_val == null) {
 	model = new JModel();
 } else {
 	model = new JModel(init_val.floatValue());
 }
 this.models.add(model);
 }

 public void step() {
 	for (int i = 0; i < this.models.size(); i++) {
 		JModel model = this.models.get(i);
 		model.step();
 	}	 		
 }

 public float get_val(int idx) {
 	JModel model = this.models.get(idx);
 	return model.get_val();
 }

 public float get_delta(int idx) {
 	JModel model = this.models.get(idx);
 	return model.get_delta();
 }

 public void set_delta(int idx, float delta) {
 	JModel model = this.models.get(idx);
 	model.set_delta(delta);
 }
}

Implementing the mosaik API

Finally we need to implement the mosaik-API methods. In our example this is
done in a class called JExampleSim. This class has to extent the abstract class
Simulator from mosaik-java-api which is the Java-equivalent to the
Simulator class in Python. The class Simulator provides
the four mosaik-API-calls init(), create(), step(), and getData()
which we have to implement. For a more detailed explanation of the API-calls see the
API-documentation.

But first we have to put together the meta-data containing information
about models, attributes, and parameters of our simulator. ‘models’ are all models our simulator
provides. In our case this is only JModel. ‘public’: true tells mosaik that it is allowed to
create models of this class. ‘params’ are parameter that are passed during initialisation, in our
case this is init_val. ‘attrs’ is a list of values that can be exchanged.

 private static final JSONObject meta = (JSONObject) JSONValue.parse(("{"
 + " 'api_version': " + Simulator.API_VERSION + ","
 + " 'models': {"
 + " 'JModel': {"
 + " 'public': true,"
 + " 'params': ['init_val'],"
 + " 'attrs': ['val', 'delta']"
 + " }"
 + " }"
 + "}").replace("'", "\""));

First method is init() that returns the
meta data. In addition it is possible to pass arguments for initialization. In our
case there is eid_prefix which will be used to name instances of the models:

 public Map<String, Object> init(String sid, Map<String, Object> simParams) {
 	if (simParams.containsKey("eid_prefix")) {
 		this.eid_prefix = simParams.get("eid_prefix").toString();
 	}
 return JExampleSim.meta;
 }

create() creates new instances of the model JModel by calling the add_model-method of
JSimulator. It also assigns ID (eid) to the models, so that it is able to keep
track of them. It has to return a list with the name (eid) and type of the models. You can find
more details about the return object in the API-documentation.

 @Override
 public List<Map<String, Object>> create(int num, String model,
 		Map<String, Object> modelParams) {
 JSONArray entities = new JSONArray();
 for (int i = 0; i < num; i++) {
 String eid = this.eid_prefix + (this.idCounter + i);
 if (modelParams.containsKey("init_val")) {
 Number init_val = (Number) modelParams.get("init_val");
 this.simulator.add_model(init_val);
 }
 JSONObject entity = new JSONObject();
 entity.put("eid", eid);
 entity.put("type", model);
 entity.put("rel", new JSONArray());
 entities.add(entity);
 this.entities.put(eid, this.idCounter + i);
 }
 this.idCounter += num;
 return entities;
 }

step() tells the simulator to perform a simulation step. It passes the time, the current
simulation time, and inputs, a JSON data object with input data from preceding simulators. The
structure of inputs is explained in the API-documentation. If there are
new delta-values in inputs they are set in the appropriate model instance. Finally it
calls the simulator’s step()-method which, on its part, calls the step()-methods
of the individual model-instances.

 public long step(long time, Map<String, Object> inputs) {
 	//go through entities in inputs
 for (Map.Entry<String, Object> entity : inputs.entrySet()) {
 //get attrs from entity
 Map<String, Object> attrs = (Map<String, Object>) entity.getValue();
 //go through attrs of the entity
 for (Map.Entry<String, Object> attr : attrs.entrySet()) {
 	//check if there is a new delta
 String attrName = attr.getKey();
 if (attrName.equals("delta")) {
 //sum up deltas from different sources
 Object[] values = ((Map<String, Object>) attr.getValue()).values().toArray();
 float value = 0;
 for (int i = 0; i < values.length; i++) {
 value += ((Number) values[i]).floatValue();
 }
 //set delta
 String eid = entity.getKey();
 int idx = this.entities.get(eid);
 this.simulator.set_delta(idx, value);
 }
 }
 }
 //call step-method
 this.simulator.step();

 return time + this.stepSize;
 }

getData() gets the simulator’s output data from the last simulation step. It
passes outputs, a JSON data object that describes which parameters are requested.
getData() goes through outputs, retrieves the requested values from the appropriate
instances of JModel and puts it in data. The structure of outputs and data is
explained in the API-documentation.

 public Map<String, Object> getData(Map<String, List<String>> outputs) {
 Map<String, Object> data = new HashMap<String, Object>();
 //*outputs* lists the models and the output values that are requested
 //go through entities in outputs
 for (Map.Entry<String, List<String>> entity : outputs.entrySet()) {
 String eid = entity.getKey();
 List<String> attrs = entity.getValue();
 HashMap<String, Object> values = new HashMap<String, Object>();
 int idx = this.entities.get(eid);
 //go through attrs of the entity
 for (String attr : attrs) {
 if (attr.equals("val")) {
 	values.put(attr, this.simulator.get_val(idx));
 }
 else if (attr.equals("delta")) {
 	values.put(attr, this.simulator.get_delta(idx));
 }
 }
 data.put(eid, values);
 }
 return data;
 }

Connecting the simulator to mosaik

We use the same scenario as in our Python example demo1.
The only thing we have to change is the way we connect our simulator to mosaik.
There are two ways to do this:

	cmd: mosaik calls the Java API by executing the command given in cmd. Mosaik starts the
Java-API in a new process and connects it to mosaik. This works only if your simulator
runs on the same machine as mosaik.

	connect: mosaik connects to the Java-API which runs as a TCP server. This works also
if mosaik and the simulator are running on different machines.

For more details about how to connect simulators to mosaik see the section about the
Sim Manager in the mosaik-documentation.

Connecting the simulator using cmd

We have to give mosaik the command how to start our Java simulator. This is done in
SIM_CONFIG. The marked lines show the differences to our Python simulator.

Sim config. and other parameters
SIM_CONFIG = {
 'JExampleSim': {
 'cmd': 'java -cp JExampleSim.jar de.offis.mosaik.api.JExampleSim %(addr)s',
 },
 'Collector': {
 'cmd': 'python collector.py %(addr)s',
 },
}
END = 10 * 60 # 10 minutes

The placeholder %(addr)s is later replaced with IP address and port by mosaik. If we now
execute demo_1.py we get the same output as in our Python-example.

Note

The command how to start the Java simulator may differ depending on your operating system.
If the command is complex, e. g. if it contains several libraries, it is usually better
to put it in a script and than call the script in cmd.

Connecting the simulator using connect

In this case the Java API acts as TCP server and listens at the given address
and port. Let’s say the simulator runs on a computer with the IP-address 1.2.3.4.
We can now choose a port that is not assigned by default [https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers].
In our example we choose port 5678. Make sure that IP-address and port is accessible from
the computer that hosts mosaik (firewalls etc.).

Note

Of course you can run mosaik and your simulator on the same machine by using
127.0.0.1:5678 (localhost). You may want to do this for testing and experimenting.
Apart from that the connection with cmd (see above) is usually
the better alternative because you don’t have to start the Java part separately.

We have to tell mosaik how to connect to the simulator. This is done in SIM_CONFIG
in our scenario (demo1):

Sim config. and other parameters
SIM_CONFIG = {
 'JExampleSim': {
 'connect': '1.2.3.4:5678',
 },
 'Collector': {
 'cmd': 'python collector.py %(addr)s',
 },
}
END = 10 * 60 # 10 minutes

The marked lines show the differences to our Python simulator. Our simulator is now called JExampleSim
and we need to give the simulator’s address and port after the connect key word.

Now we start JExampleSim. To tell the mosaik-Java-API to run as TCP-server is done
by starting it with “server” as second argument. The first command line argument is IP-address and port.
The command line in our example looks like this:

java -cp JExampleSim.jar de.offis.mosaik.api.JExampleSim 1.2.3.4:5678 server

If we now execute demo_1.py we get the same output as in
our Python-example.

Note

You can find the source code used in this tutorial in the
mosaik-source-files [https://gitlab.com/mosaik/mosaik] in the folder
docs/tutorial/code.

 Integrating a Model in Java with Generics / Annotations API

Integrating a Model in Java with Generics / Annotations API

Additionally to the basic mosaik Java API, another API based on the basic one can be used, called mosaik-java-api-generics [https://gitlab.com/mosaik/mosaik-api-java-generics],
that contains some quality of life changes, for example automatic meta-model generation based on your model,
automatic model instantiation, input parsing via generics and automatic gathering of data for mosaik.

Note

When to use basic Java API and when to use this API? If you want to use the flexibility from Python, for example using all inputs. If you want to have a more type strict Java-like experience, use this API instead.

This tutorial is also based on the Python tutorial Python tutorial for the simple model and shows how to use the most features of this API.

Getting the Java API

You can add the java package via maven or gradle, following the instructions at the mosaik-java-generics-API package repository [https://gitlab.com/mosaik/mosaik-api-java-generics/-/packages/10720854].

If you want to compile the jar yourself, you have to get the sources of the mosaik-java-generics-API for Java [https://gitlab.com/mosaik/mosaik-api-java-generics]
which is provided on Gitlab. Clone it and put it in the development environment of your choice.

Creating the model

The example model is again a replication from model.
This model is annotated with @Model, which will tell the parser that this is a model for mosaik.
Normally, the simple class name will be used as model name. This can be customized by setting the value of the annotation.
The model annotation has several different sub-annotations that are useful to customize the behaviour of the of the model parser and
automatic class instantiation.
Some are also needed for some java versions to work, namely where constructor parameter names are not set.

Note

All fields MUST be a non-primitive type. This is needed for internal purposes for the input data parsing.
Else it could be possible that you read input values (for example 0 as demand) that were never set.

Annotated models, that are added to a simulator, will be searched for public fields and getter,
which will then be transformed into attributes.
For the mosaik params, a denoted constructor parameters will be used.
If more than one constructor are available, the constructor used must be annotated with @Model.Constructor.
You can rename constructor parameter by using @Model.Param(“other_name”).
This is especially useful if parameter naming is turned off (default for basic java).

The following example shows how to use the model annotation for the example model:

@Model("ExampleModel")
public class AnnotatedExampleModel {
 private Double val;
 private Double delta = 1.d;

 public AnnotatedExampleModel() {
 this.val = 0.d;
 }

 @Model.Constructor
 public AnnotatedExampleModel(@Model.Param("init_val") Double initVal) {
 this.val = initVal;
 }

 public Double getVal() {
 return this.val;
 }

 public Double getDelta() {
 return this.delta;
 }

 public void setDelta(Double delta) {
 this.delta = delta;
 }

 public void step() {
 this.val += this.delta;
 }
}

Other usages annotations:

	@Model.Id: If you want to pass the model id into the model, you can annotate a constructor parameter with this annotation. The parameter will not be included into the meta-model.

	@Model.Suppress: If you want to use public getter or fields, which should only be used internally, you can annotate it with Suppress. These getter or fields will not be part of the meta-model created.

Creating the simulator

The simulator implements an interface to the mosaik API.
This util package has two new simulators you can inherit from.
One for simulators with only one model and one for multi model simulation.
The reason to have two simulators is simpler use of generics for single models compared to multi-model simulations.
The simulators also separate entity model and input model.
Separating the input model from the entity model enables you to use only a subset of the entity model as input.

Note

Input models need a default constructor!
This is due to the input parsing where an initially empty model’s fields will be filled iteratively.

Single model simulator

The single model simulators fits perfectly for our small example.
We need to inherit from the ModelSimulator class and set the generic types.
The model generics are first the entity model (the created model instances) and second the input model.

public class ExampleModelSim extends ModelSimulator<AnnotatedExampleModel, AnnotatedExampleModel> {

The constructor must call the parent constructor with the simulator name, simulation type and entity and input model.
This will be then used to create the meta-model.

 public ExampleModelSim() throws Exception {
 super("ExampleSim", SimulationType.TimeBased, AnnotatedExampleModel.class, AnnotatedExampleModel.class);
 }

The second method that must be implemented is initialize.
It contains the same parameter as the original init method but without does not expect you to return the meta-model,
as this will be done automatically.

 public void initialize(String sid, Float timeResolution, Map<String, Object> simParams) {
 if (simParams.containsKey("step_size")) {
 this.stepSize = ((Number) simParams.get("step_size")).intValue();
 }
 }

The last mandatory method is the modelStep, an abbreviation of the step method.
The parameter contain time, maxAdvance and parsed input from mosaik.
The input will be parsed into the generic input class passed to the simulator and put into a map which contains the model id and
a collection of InputMessages with sender and input class instance method.
The modelStep method for example will first sum the delta of all controller and then call the step method of the different models.

 @Override
 public long modelStep(long time, Map<String, Collection<InputMessage<AnnotatedExampleModel>>> inputs, long maxAdvance) {
 for (String id :
 inputs.keySet()) {
 Collection<InputMessage<AnnotatedExampleModel>> modelCollection = inputs.get(id);
 double sum = modelCollection.stream().mapToDouble(modelInputMessage -> modelInputMessage.getInputMessage().getDelta()).sum();
 getEntities().get(id).setDelta(sum);
 }
 for (AnnotatedExampleModel instance : getEntities().values()) {
 instance.step();
 }

 return time + this.stepSize;
 }

There are other optional methods that can be overridden.
- finishEntityCreation: Can be used to call auxiliary functions for models or modify the entity models and map itself.
- prepareGetData: Method will be called before the data for get_data will be gathered. Can be used if the mosaik model is only a DTO
- setupDone: Can be used to add functionality when all models are created.
- cleanup: Will be called after the simulation is finished, call super or else the entities will not be cleaned up!

The whole code for the simulator can be found here:

public class ExampleModelSim extends ModelSimulator<AnnotatedExampleModel, AnnotatedExampleModel> {

 private int stepSize = 60;

 public ExampleModelSim() throws Exception {
 super("ExampleSim", SimulationType.TimeBased, AnnotatedExampleModel.class, AnnotatedExampleModel.class);
 }

 @Override
 public void initialize(String sid, Float timeResolution, Map<String, Object> simParams) {
 if (simParams.containsKey("step_size")) {
 this.stepSize = ((Number) simParams.get("step_size")).intValue();
 }
 }

 @Override
 public void finishEntityCreation(Map<String, AnnotatedExampleModel> entities) {
 // Change the entity map or call auxiliary methods here
 }

 @Override
 public void setupDone() throws Exception {
 // Call auxiliary methods after entities are created here
 }

 @Override
 public long modelStep(long time, Map<String, Collection<InputMessage<AnnotatedExampleModel>>> inputs, long maxAdvance) {
 for (String id :
 inputs.keySet()) {
 Collection<InputMessage<AnnotatedExampleModel>> modelCollection = inputs.get(id);
 double sum = modelCollection.stream().mapToDouble(modelInputMessage -> modelInputMessage.getInputMessage().getDelta()).sum();
 getEntities().get(id).setDelta(sum);
 }
 for (AnnotatedExampleModel instance : getEntities().values()) {
 instance.step();
 }

 return time + this.stepSize;
 }
}

Multi model simulator

The second simulator is designed to be able to simulate multiple models.
While this guide only covers an example with one model, the basic concept of this simulator should come clear.
Instead of using generics directly in the class, the simulator contains auxiliary methods to register methods for:
- Model registration
- Model creation finalization
- Input data processing

To show how to use a different input model, the following model is used in this example:

@Model
public class MessageModel {
 public Double delta;
}

We first need to inherit from MultiModelInputSimulator and implement the constructor.
The constructor is the best place to register the models and processing methods.
For our example, we need to register our model and register an input step.
We can additionally register a model finishing method.

 public MultiModelExampleSim() {
 super("ExampleSim", SimulationType.TimeBased, AnnotatedExampleModel.class);

 registerStepMethod(MessageModel.class, this::parseInput);
 registerFinishCreationMethod(AnnotatedExampleModel.class, this::finishModelCreation);
 }

Note

You can only register models and methods when no simulation is running. Since there is currently no way to remove registered methods, try to only register them in the constructor.

First call the parent constructor with the simulator name and simulation type.
Additionally, already known entity models can be passed. They could also be registered via registerModel method.

registerStepMethod will take an input model class and a method to process the input data.
Parameters of the method are: time, Map of Map of InputMessage<T>, where T is the passed input model class.
In our method, we will sum all deltas for every model set it for our models.
We then return maxAdvance. This will make the simulationStep the step method which will dictate when we will be called again.
If you have a reason that a registered step method returns a time sooner than the one returned in simulationStep, the soonest time will be returned to mosaik.

 private long parseInput(long time, Map<String, Map<String, InputMessage<MessageModel>>> inputResult, long maxAdvance) {
 inputResult.forEach((model, inputMessageMap) -> {
 getEntities(AnnotatedExampleModel.class)
 .get(model)
 .setDelta(inputMessageMap
 .values()
 .stream()
 .mapToDouble(value -> value.getInputMessage().delta)
 .sum());
 });
 return maxAdvance;
 }

registerFinishCreationMethod will take an entity model class and a function which passes a map of entity model instances,
just like the similar single model simulator method, but you need to return the entity map.
Since we have no additionally modifications to make, this method is empty and only there fore display purposes.

 private Map<String, AnnotatedExampleModel> finishModelCreation(Map<String, AnnotatedExampleModel> modelMap) {
 // Put you entity modifications or auxiliary calls here
 return modelMap;
 }

Two methods have to be implemented.
First, the initialize method, just like before in the single model simulator example, where the step size of the simulation is set:

 @Override
 public void initialize(String sid, Float timeResolution, Map<String, Object> simParams) {
 if (simParams.containsKey("step_size")) {
 this.stepSize = ((Number) simParams.get("step_size")).intValue();
 }
 }

Second, the simulationStep method needs to be implemented. Here, we gather all entities of the AnnotatedExampleModel class and call step for every instance.

 @Override
 public long simulationStep(long time, Map<String, Object> inputs, long maxAdvance) {
 getEntities(AnnotatedExampleModel.class).values().forEach(AnnotatedExampleModel::step);
 return time + stepSize;
 }

You can also register methods for entity models before get_data will be called. The procedure is the same as for the other two register methods.

The whole code for the simulator:

public class MultiModelExampleSim extends MultiModelInputSimulator {
 private int stepSize = 60;

 public MultiModelExampleSim() {
 super("ExampleSim", SimulationType.TimeBased, AnnotatedExampleModel.class);

 registerStepMethod(MessageModel.class, this::parseInput);
 registerFinishCreationMethod(AnnotatedExampleModel.class, this::finishModelCreation);
 }

 private Map<String, AnnotatedExampleModel> finishModelCreation(Map<String, AnnotatedExampleModel> modelMap) {
 // Put you entity modifications or auxiliary calls here
 return modelMap;
 }

 @Override
 public void initialize(String sid, Float timeResolution, Map<String, Object> simParams) {
 if (simParams.containsKey("step_size")) {
 this.stepSize = ((Number) simParams.get("step_size")).intValue();
 }
 }

 private long parseInput(long time, Map<String, Map<String, InputMessage<MessageModel>>> inputResult, long maxAdvance) {
 inputResult.forEach((model, inputMessageMap) -> {
 getEntities(AnnotatedExampleModel.class)
 .get(model)
 .setDelta(inputMessageMap
 .values()
 .stream()
 .mapToDouble(value -> value.getInputMessage().delta)
 .sum());
 });
 return maxAdvance;
 }

 @Override
 public long simulationStep(long time, Map<String, Object> inputs, long maxAdvance) {
 getEntities(AnnotatedExampleModel.class).values().forEach(AnnotatedExampleModel::step);
 return time + stepSize;
 }
}

Starting the simulator

For the simulators to work, we need to add a main method that will start the simulation for the java side:

public class SimulationStarter {
 public static void main(String[] args) throws Throwable {
 Simulator sim = new ExampleModelSim();
 //TODO: Implement command line arguments parser (http://commons.apache.org/proper/commons-cli/)
 if (args.length < 1) {
 String ipaddr[] = {"127.0.0.1:5678"};
 SimProcess.startSimulation(ipaddr, sim);
 } else {
 SimProcess.startSimulation(args, sim);
 }
 }
}

Swap line 11 with the MultiModelExampleSimulator to use the second simulator.

Connecting the simulator to mosaik

We use the same scenario as in our Python example demo1.
The only thing we have to change is the way we connect our simulator to mosaik.
There are two ways to do this:

	cmd: mosaik calls the Java API by executing the command given in cmd. Mosaik starts the
Java-API in a new process and connects it to mosaik. This works only if your simulator
runs on the same machine as mosaik.

	connect: mosaik connects to the Java-API which runs as a TCP server. This works also
if mosaik and the simulator are running on different machines.

For more details about how to connect simulators to mosaik see the section about the
Sim Manager in the mosaik-documentation.

Connecting the simulator using cmd

We have to give mosaik the command how to start our Java simulator. This is done in
SIM_CONFIG. The marked lines show the differences to our Python simulator.

Sim config. and other parameters
SIM_CONFIG = {
 'JExampleSim': {
 'cmd': 'java -cp JExampleSim.jar de.offis.mosaik.api.utils.generics.SimulationStarter %(addr)s',
 },
 'Collector': {
 'cmd': 'python collector.py %(addr)s',
 },
}
END = 10 * 60 # 10 minutes

The placeholder %(addr)s is later replaced with IP address and port by mosaik. If we now
execute demo_1.py we get the same output as in our Python-example.

Note

The command how to start the Java simulator may differ depending on your operating system.
If the command is complex, e. g. if it contains several libraries, it is usually better
to put it in a script and than call the script in cmd.

Connecting the simulator using connect

In this case the Java API acts as TCP server and listens at the given address
and port. Let’s say the simulator runs on a computer with the IP-address 1.2.3.4.
We can now choose a port that is not assigned by default [https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers].
In our example we choose port 5678. Make sure that IP-address and port is accessible from
the computer that hosts mosaik (firewalls etc.).

Note

Of course you can run mosaik and your simulator on the same machine by using
127.0.0.1:5678 (localhost). You may want to do this for testing and experimenting.
Apart from that the connection with cmd (see above) is usually
the better alternative because you don’t have to start the Java part separately.

We have to tell mosaik how to connect to the simulator. This is done in SIM_CONFIG
in our scenario (demo1):

Sim config. and other parameters
SIM_CONFIG = {
 'JExampleSim': {
 'connect': '1.2.3.4:5678',
 },
 'Collector': {
 'cmd': 'python collector.py %(addr)s',
 },
}
END = 10 * 60 # 10 minutes

The marked lines show the differences to our Python simulator. Our simulator is now called JExampleSim
and we need to give the simulator’s address and port after the connect key word.

Now we start JExampleSim. To tell the mosaik-Java-API to run as TCP-server is done
by starting it with “server” as second argument. The first command line argument is IP-address and port.
The command line in our example looks like this:

java -cp JExampleSim.jar de.offis.mosaik.api.JExampleSim 1.2.3.4:5678 server

If we now execute demo_1.py we get the same output as in
our Python-example.

Note

You can find the source code used in this tutorial in the
mosaik-source-files [https://gitlab.com/mosaik/mosaik] in the folder
docs/tutorial/code.

ParserHelper class

As last note, the functions used to parse the mosaik data into models and creating the metamodel are available via the ParserHelper class.
Even if you don’t want to use one of the simulators, this class has some QoL methods you may want to use.
Check the inbuilt java-docs of the library to learn more about the methods available and how to use them.

 Use mosaik with Jupyter Notebooks

Use mosaik with Jupyter Notebooks

You can use mosaik with Jupyter notebooks to have an interactive experience and to write or use tutorials or to document your steps. We have pre-created tutorials written in Jupyter notebooks which you can use. This page gives a short explanation on how to use those.

Note

Starting from version 3.2, mosaik uses asyncio, which does not support nested event loops natively. This leads to an error when using mosaik in a Jupyter notebook. Luckily, the issue can be resolved by installing the library nest_asyncio [https://pypi.org/project/nest-asyncio/] and calling

import nest_asyncio
nest_asyncio.apply()

at the beginning of your notebook (before creating the mosaik World).

Step 1 - Use Jupyter in VS Code: Jupyter notebooks can be used with different UIs. A simple approach is to use Visual Studio Code with its Jupyter extension. You can find detailed information on how to use Jupyter in VS Code in the VS Code documentation [https://code.visualstudio.com/docs/datascience/jupyter-notebooks].

Step 2 - mosaik Jupyter repository: Checkout our Jupyter notebook examples repository [https://gitlab.com/mosaik/examples/mosaik-tutorials-on-binder], e.g. via git clone https://gitlab.com/mosaik/examples/mosaik-tutorials-on-binder.git and open the folder in VS Code.

Step 3 - Virtual Environment: Create a virtual environment with the requirements installed. See the following screenshots for an example on how to create a virtual environment.

[image: Choosing the kernel]

Choose the kernel.

[image: Choosing to create a virtual environment]

Select the environment type.

[image: Choosing the Python interpreter]

Select a python version to create a virtual environment.

[image: Choose to install the requirements]

Choose to install the requirements.

Step 4 - Run a Jupyter notebook: Choose one of the available notebooks, e.g., _02_simulator_mosaik.ipynb and open it. You can now run the code blocks step by step or all at once with the “Run All” button on the top. Feel free to play with the example code, extend or change it to your needs or to create your own notebooks based on these examples.

 Plotting graphs

Plotting graphs

Sometimes it is useful to visualize your scenario to understand the behavior of mosaik. You can use the plotting functions in utils for different graphs. The parameters are always the same: the world object and the name of the folder where the figures shall be stored in.

Optional parameters are slice (see below) and show_plot (default: True). With show_plot you can control if a window is opened to show the plot in an interactive window. If set to false, the plot is stored directly. If set to true, you can interact with the plot and the chosen view in stored after you close the window.

There are four different plots available:

world = mosaik.World(SIM_CONFIG, debug=True)
...
mosaik.util.plot_df_graph(world, folder='util_figures')
mosaik.util.plot_execution_graph(world, folder='util_figures')
mosaik.util.plot_execution_time(world, folder='util_figures')
mosaik.util.plot_execution_time_per_simulator(world, folder='util_figures')

You need to install matplotlib in your environment before using these functions.

Examples

The following examples will be done with the following scenario. This code is just to show
how the connections are set up, so that the graphs can be interpreted accordingly. The
important part is the part where the entities are connected.

import mosaik.util

Sim config. and other parameters
SIM_CONFIG = {
 'ExampleSim': {
 'python': 'simulator_mosaik:ExampleSim',
 },
 'ExampleSim2': {
 'python': 'simulator_mosaik:ExampleSim',
 },
 'Collector': {
 'cmd': '%(python)s collector.py %(addr)s',
 },
}
END = 10 # 10 seconds

Create World
world = mosaik.World(SIM_CONFIG, debug=True)

Start simulators
examplesim = world.start('ExampleSim', eid_prefix='Model_')
examplesim2 = world.start('ExampleSim2', eid_prefix='Model2_')
collector = world.start('Collector')

Instantiate models
model = examplesim.ExampleModel(init_val=2)
model2 = examplesim2.ExampleModel(init_val=2)
monitor = collector.Monitor()

Connect entities
world.connect(model2, model, 'val', 'delta')
world.connect(model, model2, 'val', 'delta', initial_data={"val": 1, "delta": 1}, time_shifted=True, weak=True)
world.connect(model, monitor, 'val', 'delta')

Create more entities
more_models = examplesim.ExampleModel.create(2, init_val=3)
mosaik.util.connect_many_to_one(world, more_models, monitor, 'val', 'delta')

Run simulation
world.run(until=END)

mosaik.util.plot_dataflow_graph(world, folder='util_figures')
#mosaik.util.plot_execution_graph(world, folder='util_figures')
#mosaik.util.plot_execution_time(world, folder='util_figures')
#mosaik.util.plot_execution_time_per_simulator(world, folder='util_figures')

Dataflow graph

The dataflow graph shows the direction of the dataflow between the simulators. In the example below,
the ExampleSim simulator sends data to the Collector. The ExampleSim2 sends data to ExampleSim. The
dataflow connection from ExampleSim to ExampleSim2 is both weak (dotted line) and timeshifted (red line),
which can be seen in the red label.

[image: Dataflow Graph timeshifted weak]

Execution graph

The execution graph shows the order in which the simulators are executed. Differing from the example above,
the connection between ExampleSim and ExampleSim2 is only marked as weak, not as timeshifted.

[image: Execution graph weak]

If we add back the timeshift parameter, we get an additional arrow from ExampleSim to ExampleSim2. That
is because the data from ExampleSim is used in ExampleSim2 in a timeshifted manner, i.e., from the previous
step. This is the Gauss-Seidel scheme.

[image: Execution graph weak timeshifted]

Execution time

The execution time graph shows the execution time of the different simulators so that it can be seen
where the simulation takes more or less time. In the example below it can be seen that the Collector
uses comparatively more time than the ExampleSim simulators.

[image: Execution time]

Execution time per simulator

The execution time can also be plotted over the simulation steps per simulator, as can be seen
in the figure below. You can also set the parameter plot_per_simulator=True. In that case,
the plots for the different are separated. This is especially useful if the simulators have
different step sizes.

[image: Execution time per simulator]

Slicing the graphs

If you are especially interested in a certain part of the simulation to be shown you can slice the
time steps for the execution graph, the execution time graph, and the execution time per simulator.
You can use the slicing as with Python list slicing. Jumps are not possible. Below you can see
a few examples:

mosaik.util.plot_execution_graph(world, folder='util_figures', slice=[-5,-1])
mosaik.util.plot_execution_time(world, folder='util_figures', slice=[0,5])
mosaik.util.plot_execution_time_per_simulator(world, folder='util_figures', slice=[-4,-1])

Below is the execution graph sliced as shown in the example code above.

[image: Execution graph weak timeshifted sliced]

 Using Apache Superset to visualize simulation data

Using Apache Superset to visualize simulation data

How can data that is generated through a mosaik simulation be explored without too much hassle and programming knowledge? In this tutorial
we will look at Apache Superset [https://superset.apache.org/], an open source tool for data exploration and visualization.
This tutorial is divided into two parts, the installation of Apache Superset and how to couple it with mosaik and the basic usage of Superset.
For a more in-depth look at Apache Superset and all of its features please consult the tutorials on the Superset website [https://superset.apache.org/docs/intro/].

This tutorial is based on a superset and timescaledb instance. Both instances were run through docker on ubuntu.

Getting Started

In this part of the tutorial we will show you how to install the necessary tools to use Apache Superset with mosaik.

Installing a database and collecting data

To use Apache Superset a SQL database that contains simulation data is needed. For this there are currently three options in mosaik.

	A MySQL database [https://dev.mysql.com/doc/mysql-installation-excerpt/5.7/en/]

	A PostgreSQL database [https://www.postgresql.org/docs/current/tutorial-install.html]

	A Timescale database [https://docs.timescale.com/self-hosted/latest/install/]

To install one of the databases locally follow corresponding the link.
(This tutorial is written with the Timescale database in mind. However, the other databases, should follow similar steps.)

Make sure to change the port of the database to something different from 5432 if you want to run the database and superset locally, as superset uses the same default port for its databse.
When using docker the command should look something like this:

$ docker run -d --name [YOURCONTAINERNAME] -p [YOURPORT]:5432 ...

After installing the database the corresponding mosaik adapter can be used to save simulation data into the database:

	MySQL adapter [https://gitlab.com/mosaik/components/data/mosaik-sql]

	PostgreSQL/Timescale adapter [https://gitlab.com/mosaik/internal/mosaik-timescaledb]

For further explanation regarding this.

Installing Superset

This tutorial is written using the production version of Superset based on the commit 0c083bdc1af4e6a3e17155246a3134cb5cb5887d .

To install the production version of Superset locally clone the Superset repository using the following command:

$ git clone https://github.com/apache/superset.git
$ cd superset

Afterwards a secret key needs to be set for the production version.
For this the file superset_config.py is needed.
It can be copied into the right place using the command:

$ cp ./docker/pythonpath_dev/superset_config_local.example ./docker/pythonpath_dev/superset_config_docker.py

When this is done a Secret Key can be generated. The following command can be used on linux:

$ openssl rand -base64 42

and then be added into the superset_config ./docker/pythonpath_dev/superset_config_docker.py like so:

$ SECRET_KEY = 'YOUR_OWN_RANDOM_GENERATED_SECRET_KEY'

Please be sure to remove any other option from the configuration or make sure you need the other configuration options and know what they do.

The Superset instance can be started with the following commands:

$ docker-compose -f docker-compose-non-dev.yml pull
$ docker-compose -f docker-compose-non-dev.yml up

Afterwards the instance can be found at the webaddress http://localhost:8088/. The default login username and password are admin.

Connecting Superset with the Mosaik database

To connect superset with the database both superset and the database need to be online.
This connection is done in the superset web application.
The connection between superset and the database is done in the settings -> Database Connections menu.

[image: Database Connections Setting]

Database Connections Setting

Afterwards a new Database is added by clickin on the Database + Button.

[image: Button to click for adding a database]

Button to click for adding a database

This initiates the add database dialog consisting of three steps:

[image: Step 1: Choosing the correct database(PostgreSQL in this example)]

Step 1: Choosing the correct database(PostgreSQL in this example)

[image: Step 2: Adding the database Credentials]

Step 2: Adding the database Credentials. If the database i run locally the IP-Address is 172.18.0.1 by default. If using Windows the IP might be host.docker.internal.

[image: Step 3: Finishing the setup]

Step 3: Finishing the setup

Visualizing Data in Apache Superset

After connecting the database to superset the data can now be visualized. This tutorial shows data that is saved in a Timescale database. This data is saved using the MultiWriter2 of the mosaik Timescale adapter.
To do this first the data needs to be extracted from the databae using SQL. This is done in the SQL Lab:

[image: SQL LAB view]

View of the SQL Lab

I the SQL Lab the database the database, schema and table schema of a table in the database can be selected on the left side.
On the right side a sql query can be built.
In this example we use a simple query to get all of the data from the table.
If you are using the single writer from the mosaik timescale component the SQL query will look a bit different with it either being a double cast in case of
the json table_type:

SELECT time, CAST(CAST(values->'Grid-0.0-LV1.1 Bus 1' AS VARCHAR) AS DOUBLE PRECISION) AS "BUS 1" FROM testing_json
 WHERE value_type = 'va_degree'

And it being a single cast when it being the table_type string:

SELECT time, CAST(value AS DOUBLE PRECISION) FROM testing_string
 WHERE value_type = 'va_degree'

After extracting the wanted data using a SQL query it needs to be saved as a dataset by running the query and afterwards using the save button:

[image: SQL LAB saing]

View of saving the dataset in the SQL Lab

Clicking the Save & Explore Button will open up the Chart creation view of superset. This can also be done afterwards by selecting the wanted dataset in the datasets tab.

[image: Chart View]

Chart View of superset

The default chart view of superset can be divided into two important parts. The left side where you can chose the kind of chart to create as well as input
the data from the dataset into the chart and the right chart where the chart will be displayed.

For this example lets start by selecting a line chart from the left side and then adding data to the relevant fields.

[image: Chart View Changing to line chart]

Changing chart to line chart.

After changing the chart to line chart the relevant fields to fill out are the x-Axis, which in most cases will be the time column, and the metrics, which represent te y values.
Superset can not display simple y value, it is always a sql function. If a simple x/y comparison is needed the avg/min/max of the y values can be used since for only one value this is the value itself.

[image: Chart View selecting x axis]

For selecting the x Axis you can chose from your dataset columns. Most of the time you want the simple time value but a custom sql query can also be used.

[image: Chart View selecting metrics]

When selecting a metric there are many basic sql aggregation functions to choose from.

[image: Chart View selecting metrics 2]

After selecting the metrics you can render the chart by clickin the Create Chart or Update Chart button

Multiple metrics can be selected but only one x-Axis.

[image: Chart View selecting metrics 3]

For this example I selected the average, minmum and maximum va_degree of Electric Buses over the timespan of one day in seconds.
If for your chart you cannot see the graph try making the time grain smaller.

There is a number of different charts available to visualize the data. After finishing your chart it needs to be saved inside a dashboard.
This is done by clicking the save button and giving the chart a name and either picking an existing dashboard or selecting the name of a new dashboard to be created.

[image: Chart View create Dashboard]

This is the saving menu of the chart view.

After saving the chart in a dashboard the created/picked dashboard can be found in the dashboard view.

[image: Chart View create Dashboard]

This is the dashboard view.

If a dashboard is selected it displays all charts that are saved in it.

[image: Dashboard Full]

This is the created example dashboard.

Inside a dashboard charts can be updated, removed, looked at in fullscreen, exported and more.

[image: Dashboard Fullscreen]

This is the created example chart in fullscreen.

 The mosaik API

The mosaik API

The mosaik API defines the communication protocol between mosaik and the
simulators it couples. We differentiate between a low-level and
a high-level version of the API.

The low-level API uses plain network sockets [http://en.wikipedia.org/wiki/Network_socket] to exchange JSON [http://www.json.org/] encoded messages.

The high-level API is an implementation of the low-level API in a specific
programming language. It encapsulates all parts related to networking (socket
handling, an event loop, message (de)serialization) and provides an abstract
base class with a few methods that have to be implemented in a subclass.
A high-level API implementation is currently available for Python [https://gitlab.com/mosaik/mosaik-api-python], Java [https://gitlab.com/mosaik/mosaik-api-java] and Julia [https://mosaik.gitlab.io/api/mosaik-api-julia]. Implementations for other
languages will be added when needed.

The figure below depicts the differences between the two API levels.

[image: Mosaik's low- and high-level API]Contents:

	How mosaik communicates with a simulator

	The low-level API

	The high-level API

	High-level APIs in other languages

 How mosaik communicates with a simulator

How mosaik communicates with a simulator

This section provides a general overview which API calls exists and when mosaik
calls them. The following sections will go into more detail.

When the connection between a simulator and mosaik is established, mosaik will
first call init(), optionally passing some global parameters to the
simulator. The simulators returns some meta data describing itself.

Following this, mosaik may call create() multiple times in order to
instantiate one of the models that the simulator implements. The return value
contains information describing the entities created.

The end of create phase and the beginning of the step (or simulation) phase
is marked by a call to setup_done(). At this point, all entities are
created and all relations between them are established.

When the simulation has been started, mosaik repeatedly calls step(). This
allows the simulator to step forward in time. It returns the time at which it
wants to perform its next step.

Finally, mosaik sends a stop() message to every simulator to request its
shut-down.

The following figure depicts the sequence of these messages:

[image: Main sequence diagram for the mosaik API.]After create() or step() have been called, there may be an
arbitrary amount of get_data() calls where mosaik requests the current
values of some entities’ attributes:

[image: Sequence diagram for the get_data() API call.]These methods are usually sufficient to connect simple simulators to mosaik.
However, control strategies, visualizations or database adapters may need to
actively query mosaik for additional data.

Thus, while a simulator is executing a simulation step, it may make
asynchronous requests to mosaik. It can collect information about the
simulated topology (get_related_entities()), request a new step for
itself (set_event()), get the current simulation progress
(get_progress()), query other entities for data (get_data())
and set data for other entities (set_data()).

[image: Sequence diagram for asynchronous requests made by a simulator.]The next two sections explain the low-level API and the
Python high-level API in more detail. The last section,
High-level APIs in other languages, presents
APIs available for other popular programming languages.

 The low-level API

The low-level API

The low-level API uses standard TCP sockets. If mosaik starts a simulator, that
simulator needs to connect to mosaik. If mosaik connects to a running instance
of a simulator, that simulator obviously needs to provide a server socket that
mosaik can connect to.

Network messages consists of a four bytes long header and a payload of
arbitrary length. The header is an unsigned integer (uint32 [http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html#tag_13_47_03_01])
in network byte order (big-endian) and stores the number of bytes in the
payload. The payload itself is a UTF-8 encoded JSON [http://www.json.org/]
list containing the message type, a message ID and the actual content:

[image: Messages consist of a header and a payload. The payload is a JSON list containing a message type, ID and the actual content.]Messages send between mosaik and a simulator must follow the request-reply
pattern [http://en.wikipedia.org/wiki/Request-response]. That means, that
every request that one party makes must be responded by the other party.
Request use the message type 0, replies uses 1 for success or 2 to
indicate a failure. The message ID is an integer that is unique for every
request that a network socket makes. Replies (no matter if successful or
failed) need to use the message ID of the corresponding request.

The content of a request roughly map to a Python function call:

[function, [arg0, arg1, ...], {kwarg0: val0, kwar1: val1}]

Thereby, function is always a string. The type of the arguments and keyword
arguments [https://docs.python.org/3/glossary.html#term-argument] may vary
depending on the function.

The content of replies is either the return value of the request, or an error
message or stack trace. Error messages and stack traces should always be
strings. The return value for successful requests depends on the function.

Example

We want to perform the following function call on the remote site:
my_func('hello', 'world', times=23) --> 'the return value'. This would map
to the following message payload:

[0, 1, ["my_func", ["hello", "world"], {"times": 23}]]

Our message is a request (message type 0), the message ID is 1 and the
content is a JSON list containing the function name as well as its arguments
and keyword arguments.

The complete message sent via the network will be:

\x00\x00\x00\x36[0, 1, ["my_func", ["hello", "world"], {"times": 23}]]

In case of success, the reply’s payload to this request could look like this:

[1, 1, "the return value"]

In case of error, this could be the reply’s payload:

[2, 1, "Error in your code line 23: ..."]

The actual network messages would be:

\x00\x00\x00\x1a[1, 1, "the return value"]
\x00\x00\x00\x29[2, 1, "Error in your code line 23: ..."]

All commands that mosaik may send to a simulator are described in-depth in the
next section. All asynchronous requests that a simulator may
make are described in Asynchronous requests.

API calls:

	init

	create

	setup_done

	step

	get_data

	stop

Async. requests:

	get_progress

	get_related_entities

	get_data

	set_data

	set_event

API calls

This section describes the API calls init(), create(), setup_done(),
step(), get_data() and stop(). In addition to these, a simulator
may optionally expose additional functions (referred to as extra methods).
These methods can be called at composition time (when you create your
scenario).

init

["init", [sim_id], {time_resolution=time_resolution, **sim_params}] -> meta

The init call is made once to initialize the simulator. It has one
positional argument, the simulator ID, and time_resolution and an arbitrary
amount of further parameters (sim_params) as keyword arguments.

The return value meta is an object with meta data about the simulator:

{
 "api_version": "x.y",
 "type": "time-based"|"event-based"|"hybrid",
 "models": {
 "ModelName": {
 "public": true|false,
 "params": ["param_1", ...],
 "attrs": ["attr_1", ...],
 "any_inputs": true|false,
 },
 ...
 },
 "extra_methods": [
 "do_cool_stuff",
 "set_static_data"
]
}

The api_version is a string that defines which version of the mosaik API the
simulator implements. Since mosaik API version 2.2, the simulator’s major
version [http://semver.org/] (“x”, in the snippet above) has to be equal to
mosaik’s. Mosaik will cancel the simulation if a version mismatch occurs.

The type defines how the simulator is stepped and for which time the output
is valid. Time-based simulators only decide themselves on which points in
time they want to be stepped (i.e. communicate with the other simulators).
Their output is valid until the next step. Event-based simulators are always
stepped when a predecessor provides new input, but they can also schedule
steps for themselves. A more fine-grained behavior can be set for hybrid
simulators. See the scheduler description for details.

models is an object describing the models provided by this simulator. The
entry public determines whether a model can be instantiated by a user
(true) or if it is a sub-model that cannot be created directly (false).
params is a list of parameter names that can be passed to the model when
creating it. attrs is a list of attribute names that can be accessed (reading
or writing). If the optional any_inputs flag is set to true, any
attributes can be connected to the model, even if they are not attrs. This
may, for example, be useful for databases that don’t know in advance which
attributes of an entity they’ll receive.

extra_methods is an optional list of methods that a simulator provides in
addition to the standard API calls (init(), create() and so on). These
methods can be called while the scenario is being created and can be used for
operations that don’t really belong into init() or create().

Example

Request:

["init", ["PowerGridSim-0"], {"time_resolution": 1., "step_size": 60}]

Reply:

{
 "api_version": "3.0",
 "type": "time-based",
 "models": {
 "Grid": {
 "public": true,
 "params": ["topology_file"],
 "attrs": []
 },
 "Node": {
 "public": false,
 "params": [],
 "attrs": ["P", "Q"]
 },
 "Branch": {
 "public": false,
 "params": [],
 "attrs": ["I", "I_max"]
 }
 }
}

create

["create", [num, model], {**model_params}] -> entity_list

Create num instances of model using the provided model_params

num is an integer for the number of model instances to create.

model needs to be a public entry in the simulator’s meta['models'] (see
init).

model_params is an object mapping parameters (from
meta['models'][model]['params'], see init) to their values.

Return a (nested) list of objects describing the created model instances
(entities). The root list must contain exactly num elements. The number of
objects in sub-lists is not constrained:

[
 {
 "eid": "eid_1",
 "type": "model_name",
 "rel": ["eid_2", ...],
 "children": <entity_list>,
 },
 ...
]

The entity ID (eid) of an object must be unique within a simulator instance.
For entities in the root list, type must be the same as the model
parameter. The type for objects in sub-lists may be anything that can be found
in meta['models'] (see init). rel is an optional list of
related entities; “related” means that two entities are somehow connect within
the simulator, either logically or via a real data-flow (e.g., grid
nodes are related to their adjacent branches). The children entry is optional
and may contain a sub-list of entities.

Example

Request:

["create", [1, "Grid"], {"topology_file": "data/grid.json"}]

Reply:

[
 {
 "eid": "Grid_1",
 "type": "Grid",
 "rel": [],
 "children": [
 {
 "eid": "node_0",
 "type": "Node",
 },
 {
 "eid": "node_1",
 "type": "Node",
 },
 {
 "eid": "branch_0",
 "type": "Branch",
 "rel": ["node_0", "node_1"]
 }
]
 }
]

setup_done

["setup_done", [], {}] -> null

Callback that indicates that the scenario setup is done and the actual
simulation is about to start.

At this point, all entities and all connections between them are know but no
simulator has been stepped yet.

Implementing this method is optional.

Added in mosaik API version 2.2.

Example

Request:

["setup_done", [], {}]

Reply:

null

step

["step", [time, inputs, max_advance], {}] -> Optional[time_next_step]

Perform the next simulation step at time time using input values from
inputs and return the new simulation time (the time at which step should
be called again) or null if the simulator doesn’t need to step itself.

time, max_advance, and the time_next_step are integers (or null). Their
unit is arbitrary, e.g. seconds (counted from simulation start), but has
to be consistent among all simulators used in a scenario.

inputs is a dict of dicts mapping entity IDs to attributes and dicts of
values (each simulator has to decide on its own how to reduce the values (e.g.,
as its sum, average or maximum):

{
 "eid_1": {
 "attr_1": {'src_full_id_1': val_1_1, 'src_full_id_2': val_1_2, ...},
 "attr_2": {'src_full_id_1': val_2_1, 'src_full_id_2': val_2_2, ...},
 ...
 },
 ...
}

max_advance tells the simulator how far it can advance its time without
risking any causality error, i.e. it is guaranteed that no external step will
be triggered before max_advance + 1, unless the simulator activates an output
loop earlier than that. For time-based simulators (or hybrid ones without any
triggering input) max_advance is always equal to the end of the simulation
(until). See the description of the scheduler for more
details.

Example

Request:

[
 "step",
 [
 60,
 {
 "node_1": {"P": [20, 3.14], "Q": [3, -2.5]},
 "node_2": {"P": [42], "Q": [-23.2]},
 },
 3600
],
 {}
]

Reply:

120

get_data

["get_data", [outputs], {}] -> data

Return the data for the requested attributes in outputs

outputs is an object mapping entity IDs to lists of attribute names whose
values are requested (connected to any other simulator):

{
 "eid_1": ["attr_1", "attr_2", ...],
 ...
}

The return value needs to be an object of objects mapping entity IDs and
attribute names to their values:

{
 "eid_1: {
 "attr_1": "val_1",
 "attr_2": "val_2",
 ...
 },
 ...
 "time": *output_time* (optional)
}

Time-based simulators have set an entry for all requested attributes, whereas
for event-based and hybrid simulators this is optional (e.g. if there’s no new
event).

Event-based and hybrid simulators can optionally set a timing of their
non-persistent output attributes via a time entry, which is valid for all
given (non-persistent) attributes. If not given, it defaults to the current
time of the step. Thus only one output time is possible per step. For further
output times the simulator has to schedule another self-step (via the step’s
return value).

Examples

Request:

["get_data", [{"branch_0": ["I"]}], {}]

Reply:

{
 "branch_0": {
 "I": 42.5
 }
}

Request:

["get_data", [{"node_0": ["msg"], "node_1": ["msg"]}], {}]

Reply:

{
 "node_1": {
 "msg": "Hi"
 },
 "time": 140
}

stop

["stop", [], {}] -> null

Immediately stop the simulation and terminate.

This call has no parameters and no reply is required.

Example

Request:

["stop", [], {}]

Reply:

no reply required

Asynchronous requests

get_progress

["get_progress", [], {}] -> progress

Return the current overall simulation progress in percent.

Example

Request:

["get_progress", [], {}]

Reply:

23.42

get_related_entities

["get_related_entities", [entities], {}] -> related_entities

Return information about the related entities of entities.

If entitites omitted (or null), return the complete entity graph, e.g.:

{
 "nodes": {
 "sid_0.eid_0": {"type": "A"},
 "sid_0.eid_1": {"type": "B"},
 "sid_1.eid_0": {"type": "C"},
 },
 "edges": [
 ["sid_0.eid_0", "sid_1.eid0", {}],
 ["sid_0.eid_1", "sid_1.eid0", {}],
],
}

If entities is a single string (e.g., sid_1.eid_0), return an object
containing all entities related to that entity:

{
 "sid_0.eid_0": {"type": "A"},
 "sid_0.eid_1": {"type": "B"},
}

If entities is a list of entity IDs (e.g., ["sid_0.eid_0",
"sid_0.eid_1"]), return an object mapping each entity to an object of related
entities:

{
 "sid_0.eid_0": {
 "sid_1.eid_0": {"type": "B"},
 },
 "sid_0.eid_1": {
 "sid_1.eid_1": {"type": "B"},
 },
}

Example

Request:

["get_related_entities", [["grid_sim_0.node_0", "grid_sim_0.node_1"]] {}]

Reply:

{
 "grid_sim_0.node_0": {
 "grid_sim_0.branch_0": {"type": "Branch"},
 "pv_sim_0.pv_0": {"type": "PV"}
 },
 "grid_sim_0.node_1": {
 "grid_sim_0.branch_0": {"type": "Branch"}
 }
}

get_data

["get_data", [attrs], {}] -> data

Get the data for the requested attributes in attrs.

attrs is an object of (fully qualified) entity IDs mapping to lists of
attribute names:

{
 "sim_id.eid_1": ["attr_1", "attr_2", ...],
 ...
}

The return value is an object mapping the input entity IDs to data objects
mapping attribute names to there respective values:

{
 "sim_id.eid_1: {
 "attr_1": "val_1",
 "attr_2": "val_2",
 ...
 },
 ...
}

Example

Request:

["get_data", [{"grid_sim_0.branch_0": ["I"]}], {}]

Reply:

{
 "grid_sim_0.branch_0": {
 "I": 42.5
 }
}

set_data

["set_data", [data], {}] -> null

Set data as input data for all affected simulators.

data is an object mapping source entity IDs to objects which in turn map
destination entity IDs to objects of attributes and values
({"src_full_id": {"dest_full_id": {"attr1": "val1", "attr2": "val2"}}})

Example

Request:

[
 "set_data",
 [{
 "mas_0.agent_0": {"pvsim_0.pv_0": {"P_target": 20,
 "Q_target": 3.14}},
 "mas_0.agent_1": {"pvsim_0.pv_1": {"P_target": 21,
 "Q_target": 2.718}}
 }],
 {}
]

Reply:

null

set_event

["set_event", [time], {}] -> null

Request an event/step for itself at time time.

Example

Request:

["set_event", [5], {}]

Reply:

null

 The high-level API

The high-level API

Currently, there are high-level APIs for Python, Java, C#, and MatLab.

Installation

The Python implementation of the mosaik API is available as a separate package
an can easily be installed via pip [https://pip.pypa.io]:

pip install mosaik-api-v3

It supports Python 2.7, >= 3.3 and PyPy.

Usage

You create a subclass of mosaik_api_v3.Simulator which implements the
four API calls init,
create, step
and get_data. You can optionally override
configure and
finalize. The former allows you to handle
additional command line arguments that your simulator may need. The latter is
called just before the simulator terminates and allows you to perform some
clean-up.

You then call mosaik_api_v3.start_simulation from your main() function
to get everything set-up and running. That function handles the networking as
well as serialization and de-serialization of messages. Commands from the
low-level API are translated to simple function calls. The return value of
these functions is used for the reply.

For example, the message

["create", [2, "Model", {"param1": 15, "param2": "spam"}]

will result in a call

create(2, 'Model', param1=15, param2='spam')

API calls

	
class mosaik_api_v3.Simulator(meta)[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	This is the base class that you need to inherit from and implement the
API calls.

	Parameters:

	meta (Meta) –

	
meta[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	Meta data describing the simulator (the same that is returned by
init).

{
 'api_version': 'x.y',
 'type': 'time-based'|'event-based'|'hybrid',
 'models': {
 'ModelName': {
 'public': True|False,
 'params': ['param_1', ...],
 'attrs': ['attr_1', ...],
 'any_inputs': True|False,
 'trigger': ['attr_1', ...],
 'non-persistent': ['attr_2', ...],
 },
 ...
 },
 'extra_methods': [
 'do_cool_stuff',
 'set_static_data'
]
}

The api_version is a string that defines which version of the mosaik API
the simulator implements. Since mosaik API version 2.3, the simulator’s
major version [http://semver.org/] (“x”, in the snippet above) has to be
equal to mosaik’s. Mosaik will cancel the simulation if a version mismatch
occurs.

The type defines how the simulator is advanced through time and whether
its attributes are persistent in time or transient.

models is a dictionary describing the models provided by this simulator.
The entry public determines whether a model can be instantiated by a user
(True) or if it is a sub-model that cannot be created directly
(False). params is a list of parameter names that can be passed to
the model when creating it. attrs is a list of attribute names that can
be accessed (reading or writing). If the optional any_inputs flag is set
to true, any attributes can be connected to the model, even if they are
not attrs. This may, for example, be useful for databases that don’t know
in advance which attributes of an entity they’ll receive. trigger is a
list of attribute names that cause the simulator to be stepped when
another simulator provides output which is connected to one of those.

extra_methods is an optional list of methods that a simulator provides in
addition to the standard API calls (init(), create() and so on).
These methods can be called while the scenario is being created and can be
used for operations that don’t really belong into init() or
create().

	
mosaik[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	An RPC proxy to mosaik.

	
init(sid, time_resolution=1.0, **sim_params)[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	
	Initialize the simulator with the ID sid and pass the
	time_resolution and additional parameters (sim_params)
sent by mosaik. Return the meta data meta.

If your simulator has no sim_params, you don’t need to override this
method.

	Parameters:

	
	sid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	time_resolution (float [https://docs.python.org/3/library/functions.html#float]) –

	Return type:

	Meta

	
create(num, model, **model_params)[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	Create num instances of model using the provided model_params.

num is an integer for the number of model instances to create.

model needs to be a public entry in the simulator’s
meta['models'].

model_params is a dictionary mapping parameters (from
meta['models'][model]['params']) to their values.

Return a (nested) list of dictionaries describing the created model
instances (entities). The root list must contain exactly num
elements. The number of objects in sub-lists is not constrained:

[
 {
 'eid': 'eid_1',
 'type': 'model_name',
 'rel': ['eid_2', ...],
 'children': [
 {'eid': 'child_1', 'type': 'child'},
 ...
],
 },
 ...
]

The entity ID (eid) of an object must be unique within a simulator
instance. For entities in the root list, type must be the same as the
model parameter. The type for objects in sub-lists may be anything
that can be found in meta['models']. rel is an optional list of
related entities; “related” means that two entities are somehow connect
within the simulator, either logically or via a real data-flow (e.g.,
grid nodes are related to their adjacent branches). The children
entry is optional and may contain a sub-list of entities.

	Parameters:

	
	num (int [https://docs.python.org/3/library/functions.html#int]) –

	model (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][CreateResult]

	
setup_done()[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	Callback that indicates that the scenario setup is done and the
actual simulation is about to start.

At this point, all entities and all connections between them are know
but no simulator has been stepped yet.

Implementing this method is optional.

Added in mosaik API version 2.3

	Return type:

	None

	
step(time, inputs, max_advance)[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	Perform the next simulation step from time time using input values
from inputs and return the new simulation time (the time at which
step() should be called again).

time and the time returned are integers. Their unit is arbitrary,
e.g. seconds (from simulation start), but has to be consistent among
all simulators used in a simulation.

inputs is a dict of dicts mapping entity IDs to attributes and
dicts of values (each simulator has to decide on its own how to reduce
the values (e.g., as its sum, average or maximum):

{
 'dest_eid': {
 'attr': {'src_fullid': val, ...},
 ...
 },
 ...
}

max_advance tells the simulator how far it can advance its time
without risking any causality error, i.e. it is guaranteed that no
external step will be triggered before max_advance + 1, unless the
simulator activates an output loop earlier than that. For time-based
simulators (or hybrid ones without any triggering input) max_advance
is always equal to the end of the simulation (until).

	Parameters:

	
	time (int [https://docs.python.org/3/library/functions.html#int]) –

	inputs (mosaik_api_v3.types.InputData) –

	max_advance (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type:

	int [https://docs.python.org/3/library/functions.html#int] | None

	
get_data(outputs)[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	Return the data for the requested attributes in outputs

outputs is a dict mapping entity IDs to lists of attribute names
whose values are requested:

{
 'eid_1': ['attr_1', 'attr_2', ...],
 ...
}

The return value needs to be a dict of dicts mapping entity IDs and
attribute names to their values:

{
 'eid_1: {
 'attr_1': 'val_1',
 'attr_2': 'val_2',
 ...
 },
 ...
 'time': output_time (for event-based sims, optional)
}

Time-based simulators have set an entry for all requested attributes,
whereas for event-based and hybrid simulators this is optional (e.g.
if there’s no new event).
Event-based and hybrid simulators can optionally set a timing of their
non-persistent output attributes via a time entry, which is valid
for all given (non-persistent) attributes. If not given, it defaults
to the current time of the step. Thus only one output time is possible
per step. For further output times the simulator has to schedule
another self-step (via the step’s return value).

	Parameters:

	outputs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
configure(args)[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	This method can be overridden to configure the simulation with the
command line args as created by docopt [http://docopt.org/].

backend and env are the simpy.io backend and environment used
for networking. You can use them to start extra processes (e.g., a
web server).

The default implementation simply ignores them.

	
finalize()[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	This method can be overridden to do some clean-up operations after
the simulation finished (e.g., shutting down external processes).

The mosaik-api-v3 package provides an example simulator [https://gitlab.com/mosaik/mosaik-api-python/-/blob/master/example_sim/mosaik.py]
that demonstrates how the API can be implemented.

Asynchronous requests

The asynchronous requests can be called via the
MosaikRemote proxy self.mosaik from within
step, except for set_data() which has to
be called from another thread/process (see below). They don’t return the
actual results but an event (similar to a future of deferred). The event
will eventually hold the actual result. To wait for that result to arrive, you
simply yield the event, e.g.:

def step(self, time, inputs, max_advance):
 progress = yield self.mosaik.get_progress()
 # ...

	
async MosaikRemote.get_progress()[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Return the current simulation progress from
sim_progress.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
async MosaikRemote.get_related_entities(entities=None)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Return information about the related entities of entities.

If entities omitted (or None), return the complete entity
graph, e.g.:

{
 'nodes': {
 'sid_0.eid_0': {'type': 'A'},
 'sid_0.eid_1': {'type': 'B'},
 'sid_1.eid_0': {'type': 'C'},
 },
 'edges': [
 ['sid_0.eid_0', 'sid_1.eid0', {}],
 ['sid_0.eid_1', 'sid_1.eid0', {}],
],
}

If entities is a single string (e.g., sid_1.eid_0), return a dict
containing all entities related to that entity:

{
 'sid_0.eid_0': {'type': 'A'},
 'sid_0.eid_1': {'type': 'B'},
}

If entities is a list of entity IDs (e.g., ['sid_0.eid_0',
'sid_0.eid_1']), return a dict mapping each entity to a dict of
related entities:

{
 'sid_0.eid_0': {
 'sid_1.eid_0': {'type': 'B'},
 },
 'sid_0.eid_1': {
 'sid_1.eid_1': {'type': 'B'},
 },
}

	Parameters:

	entities (str [https://docs.python.org/3/library/stdtypes.html#str] | List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) –

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
async MosaikRemote.get_data(attrs)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Return the data for the requested attributes attrs.

attrs is a dict of (fully qualified) entity IDs mapping to lists
of attribute names ({'sid/eid': ['attr1', 'attr2']}).

The return value is a dictionary, which maps the input entity IDs to
data dictionaries, which in turn map attribute names to their
respective values:
({'sid/eid': {'attr1': val1, 'attr2': val2}}).

	Parameters:

	attrs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
async MosaikRemote.set_data(data)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Set data as input data for all affected simulators.

data is a dictionary mapping source entity IDs to destination entity
IDs with dictionaries of attributes and values ({'src_full_id':
{'dest_full_id': {'attr1': 'val1', 'attr2': 'val2'}}}).

	Parameters:

	data (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) –

	
async MosaikRemote.set_event(event_time)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Schedules an event/step at simulation time event_time.

	Parameters:

	event_time (int [https://docs.python.org/3/library/functions.html#int]) –

The mosaik-api-v3 package provides an example “multi-agent system” [https://gitlab.com/mosaik/mosaik-api-python/-/blob/master/example_mas/mosaik.py]
that demonstrates how asynchronous requests can be implemented.

Starting the simulator

To start your simulator, you just need to create an instance of your
Simulator sub-class and pass it to
start_simulation:

	
mosaik_api_v3.start_simulation(simulator, description='', extra_options=None)[source] [https://gitlab.com/mosaik/api/mosaik-api-python/-/blob/master/mosaik_api_v3/__init__.py]

	Start the simulation process for simulation.

simulation is the instance of your API implementation (see
Simulator).

description may override the default description printed with the help on
the command line.

extra_option may be a list of options for docopt [http://docopt.org/]
(example: ['-e, --example Enable example mode']). Commandline
arguments are passed to Simulator.configure so that your API
implementation can handle them.

Here is an example with a bit more context:

import mosaik_api_v3

example_meta = {
 'type': 'time-based',
 'models' {
 'A': {
 'public': True,
 'params': ['init_val'],
 'attrs': ['val_out', 'dummy_out'],
 },
 }
}

class ExampleSim(mosaik_api_v3.Simulator):
 def __init__(self):
 super().__init__(example_meta)

 sim_name = 'ExampleSimulation'

 def configure(self, args, backend, env):
 # Here you could handle additional command line arguments

 def init(self, sid):
 # Initialize the simulator
 return self.meta

 # Implement the remaining methods (create, step, get_data, ...)

def main():
 import sys

 description = 'A simple example simulation for mosaik.'
 extra_options = [
 '--foo Enable foo',
 '--bar BAR The bar parameter',
]

 return mosaik_api_v3.start_simulation(ExampleSim(), description, extra_options)

if __name__ == '__main__':
 sys.exit(main())

 High-level APIs in other languages

High-level APIs in other languages

Mosaik provides high-level APIs not only for simulators written in Python, but also in various other languages.
Currently, Java and Julia are supported.

Java API

For the use of the Java API please refer to the Java tutorial.

Note

There is also an extended version for Java at Java tutorial that incorporates Quality of Life changes for a more Java-like experience.

Julia API

For the use of the Julia API, please refer to the Julia mosaik API docs [https://mosaik.gitlab.io/api/mosaik-api-julia].

 Scenario definition

Scenario definition

Modeling or composing a scenario in mosaik comprises three steps:

	starting simulators,

	instantiating models within the simulators, and

	connecting the model instances of different simulators to establish the data
flow between them.

This page will show you how to create simple scenarios in these three steps.
It will also provide some recipes that allow you to create more complex
scenarios.

The setup

The central class for creating scenarios is mosaik.scenario.World (for
your convenience, you can also import World directly from mosaik). This
class stores all data and state that belongs to your scenario and its
simulation. It also provides various methods that allow you to start simulators
and establish the data flows between them.

In this tutorial, we’ll create a very simple scenario using the example
simulation that is provided with the Python implementation of the simulator
API [https://gitlab.com/mosaik/mosaik-api-python/].

We start by importing the mosaik package and creating
a World instance:

>>> import mosaik
>>>
>>> sim_config: mosaik.SimConfig = {
... 'ExampleSim': {'python': 'example_sim.mosaik:ExampleSim'},
... }
>>>
>>> world = mosaik.World(sim_config)

(You can leave off the type annotation on sim_config if you’re not using type checking.)

As we start simulator instances by using world, it needs to know what
simulators are available and how to start them. This is called the sim config
and is a dict that contains every simulator we want to use together with some
information on how to start it.

In our case, the only simulator is the ExampleSim. It will be started by importing
the module example_sim.mosaik and instantiating the class ExampleSim.
This is only possible with simulators written in Python 3. You can also let
mosaik start simulator as external processes or let it connect to already
running processes. The simulator manager docs explain how
this all works and give you some hints when to use which method of starting
a simulator.

In addition to the sim config you can optionally pass the mosaik_config dictionary to
World in order to overwrite some general parameters for mosaik (e.g.,
the host and port number for its network socket or timeouts). Usually, the
defaults work just well.

>>> world = mosaik.World(sim_config, mosaik_config={'addr': ('127.0.0.1', 5555), 'start_timeout': 10, 'stop_timeout': 10,})

Via the time_resolution parameter you can set a global time resolution for
the scenario, which will be passed to each simulator as keyword argument via
the init function (see API init). It tells each simulator how to
translate mosaik’s integer time to simulated time (in seconds from simulation
start). It has to be a float and it defaults to 1..

>>> world = mosaik.World(sim_config, time_resolution=1.)

If you set the debug flag to True an execution graph will be created
during the simulation. This may be useful for debugging and testing. Note
that this increases the memory consumption and simulation time.

>>> world = mosaik.World(sim_config, debug=False)

There are two more technical parameters: You can set the cache flag to False
if the average step size of the simulators is orders of magnitudes larger than
the time resolution, i.e. a time resolution of microseconds where the typical
step size is in the seconds range. This will considerably reduce the
simulation time.

>>> world = mosaik.World(sim_config, cache=True)

Via max_loop_iterations you can limit the maximum iteration count within one
time step for same-time loops. It’s default value is 100.

>>> world = mosaik.World(sim_config, max_loop_iterations=100)

Starting simulators

Now that the basic set-up is done, we can start our simulators:

>>> simulator_0 = world.start('ExampleSim', step_size=2)
Starting "ExampleSim" as "ExampleSim-0" ...
>>> simulator_1 = world.start('ExampleSim')
Starting "ExampleSim" as "ExampleSim-1" ...

To start a simulator, we call World.start and pass the name of the
simulator. Mosaik looks up that name in its sim config, starts the simulator
for us and returns a ModelFactory. This factory allows us to
instantiate simulation models within that simulator.

In addition to the simulator name, you can pass further parameters for the
simulators. These parameters are passed to the simulator via the init
API call.

Instantiating simulation models

Simulators specify a set of public models in their meta data (see init
API call). These models can be accessed with the
ModelFactory that World.start returns as if they were normal
Python classes. So to create one instance of ExampleSim’s model A we just
write:

>>> a = simulator_0.A(init_val=0)

This will create one instance of the A simulation model and pass the model
parameter init_val=0 to it (see create API call).
Lets see what it is that gets returned to us:

>>> print(a)
Entity('ExampleSim-0', '0.0', 'ExampleSim', A)
>>> a.sid, a.eid, a.full_id
('ExampleSim-0', '0.0', 'ExampleSim-0.0.0')
>>> a.sim_name, a.type
('ExampleSim', 'A')
>>> a.children
[]

A model instance is represented in your scenario as an Entity. The
entity belongs to the simulator ExampleSim-0, has the ID 0.0 and its type
is A. The entity ID is unique within a simulator. To make it globally unique,
we prepend it with the simulator ID. This is called the entity’s full ID (see
Entity.full_id). You can also get a list of its child entities (which
is empty in this case).

In order to instantiate multiple instances of a model, you can either use
a simple list comprehension (or for loop) or call the static method
create of the model:

>>> a_set = [simulator_0.A(init_val=i) for i in range(2)]
>>> b_set = simulator_1.B.create(3, init_val=1)

The list comprehension is more verbose but allows you to pass individual
parameter values to each instance. Using create is more concise but all
three instance will have the same value for init_val. In both cases you’ll
get a list of entities (aka entity sets).

Setting initial events

Time-based and hybrid simulators are automatically scheduled for time step 0,
and will organize their scheduling until the simulation’s end themselves
afterward. For event-based simulators this is not the case, as they might only
want to be stepped if an event is created by another simulator for example.
Therefore you might need to set initial events for some event-based ones via
World.set_initial_event, which sets an event for time 0 by default,
or at later times if explicitly stated:

>>> world.set_initial_event(a.sid)
>>> world.set_initial_event(b.sid, time=3)

Connecting entities

If we would now run our simulation, both, ExampleSim-0 and Example-Sim-1 would run
in parallel and never exchange any data. To change that, we need to connect
the models providing input data to entities requiring this data. In our case,
we will connect the val_out attribute of the A instances with the val_in
attribute of the B instances:

>>> a_set.insert(0, a) # Put our first A instance to the others
>>> for a, b in zip(a_set, b_set):
... world.connect(a, b, ('val_out', 'val_in'))

The method World.connect takes the source entity, the destination
entity and an arbitrary amount of (source attribute, dest. attribute) tuples.
If the name of the source attributes equals that of the destination attribute,
you can alternatively just pass a single string (e.g., connect(a, b,
'attr') is the same as connect(a, b, ('attr', 'attr'))).

mosaik deals with two separate types of data exchange between simulators:

	First, there are measurements that have a value at each point of time.
Examples include all kinds of physical measurements like the voltage at a
grid node or the power output of a PV system.

	Second, there are events (those were introduced in mosaik 3) which happen at
a particular point in time. A typical example is a message between ICT devices
or a set-point message from some controller to the PV system that it controls.

Each attribute of a mosaik simulator can deal either with measurements or with
events. In case of time-based simulators, all attributes work as measurements,
in case of event-based simulators, all attributes work as events. Hybrid-simulators
can work with either on an attribute-by-attribute basis (i.e. each attribute is
either for measurements or for events). For historic reasons, input attributes
are called trigger attributes when they deal with events, and output attributes
are called non-persistent when they deal with events. The opposite terms ‘non-trigger’
and ‘persistent’ are used for measurement attributes (input and output, respectively).

mosaik will complain if you connect a non-persistent output to a non-trigger
input.
This is because the target simulator should be able to rely on always receiving input on its non-trigger attributes, but the source simulator could potentially omit output on its non-persistent attribute.
(mosaik could provide output that the source simulator produced in earlier steps, delaying or even repeating it.
However, this would be semantically unsound as the event is associated with the time at which it was generated by the source simulator, not with the time at which the target simulator happens to run.)

[image: Solutions to solve warnings for attribute connections]
A non-persistent output connected to a non-trigger input leads to a warning.

Usually, the solution to resolve this warning is to change the type of one of the affected attributes: the source attribute from non-persistent to persistent, or the target attribute from non-trigger to trigger.
You can do this without affecting the simulator’s other attributes by changing the simulator’s type to hybrid, where you can then specify which attributes should be trigger and/or non-persistent.
(See here for the format of META.)
Note that the attributes of hybrid simulator behave like measurements by default, so if you are changing an event-based simulator to hybrid, you will have to specify all attributes except for the affected one to be trigger and/or non-persistent if you want to preserve their previous behavior.

We also encourage you to carefully think about the opposite case where you attempt to connect a persistent output to a trigger input, as wanting to do this often indicates ambiguity about what your data represents.
However, because there is the common case of saving data generated in the simulation using some database or writer simulator (regardless of how whether it is an event or a measurement), mosaik will not complain when you set up connections like this.

You are also not allowed to create circular dependencies via standard
connections only (e.g., connect a to b and then connect b to a).
There are several ways to allow a bidirectional or cyclic exchange of data,
which is required for things like control strategies, e.g. via time-shifted
or weak connections. See section How to achieve cyclic data-flows for details.

Running the simulation

When all simulators are started, models are instantiated and connected, we can
finally run our simulation:

>>> world.run(until=10)
Starting simulation.
Simulation finished successfully.

This will execute the simulation from time 0 until we reach the time until
(in simulated time units). The scheduler section explains in
detail what happens when you call run.

While the simulation is running, the current progress is visualized using a tqdm [https://pypi.org/project/tqdm/] progress bar. You can turn this off using the print_progress parameter of world.run:

world.run(until=10, print_progress=False)

If you want a more detailed progress report, you can set print_progress='individual' which will produce a separate progress bar for each simulator in your simulation.

We can also set the lazy_stepping flag (default: True).
If True, a simulator can only run ahead one step of its successors.
If False, a simulator always steps as long as all inputs are provided.
This might decrease the simulation time but increase the memory consumption.

>>> world.run(until=END, lazy_stepping=False)

To wrap it all up, this is how our small example scenario finally looks like:

Setup
import mosaik

sim_config = {
 'ExampleSim': {'python': 'example_sim.mosaik:ExampleSim'},
}

world = mosaik.World(sim_config)

Start simulators
simulator_0 = world.start('ExampleSim', step_size=2)
simulator_1 = world.start('ExampleSim')

Instantiate models
a_set = [simulator_0.A(init_val=i) for i in range(3)]
b_set = simulator_1.B.create(3, init_val=1)

Connect entities
for a, b in zip(a_set, b_set):
 world.connect(a, b, ('val_out', 'val_in'))

Run simulation
world.run(until=10)

How to achieve cyclic data-flows

The guiding principle behind mosaik’s scheduler is that simulator steps that happen at the same (mosaik) time are handled in data-dependency order.
In other words, if simulator A is connected to simulator B (with data flowing from A to B) and both simulators are scheduled to step at time t, simulator A will run first so that simulator B can use the most up-to-date outputs from A in its calculation.

This leads to problems when naively setting up bi-directional or cyclic data flow, like this

Send battery's active power value to the controller
world.connect(battery, controller, 'P')
Controller sends back a schedule to the battery
world.connect(controller, battery, 'schedule')

The problem is that mosaik cannot step either of the involved simulators as both are waiting for input from the other one.
mosaik will recognize cycles like this and raise an error when you attempt to run a simulation containing them.
To avoid this error, the standard connections in your scenario must form an acyclic (directed) graph (on the level of simulators).

Of course, cyclic data flow is common in co-simulations and mosaik offers two options for this: time-shifted connections and weak connections.
(There are also asynchronous requests, which are deprecated.)

Time-shifted connections

You can resolve a cycle by marking (at least) one of its constituent connections as time shifted, like so:

world.connect(battery, controller, 'P')
world.connect(controller, battery, 'schedule', time_shifted=True,
 initial_data={'schedule': initial_schedule})

This indicates to mosaik that the output of the source simulator should only be passed to the target simulator at the next time step.
Now the loop is resolved, as the non-time-shifted connections form an acyclic graph again.
(So in the example, battery will run before controller in each step.)

For the first step, the source simulator in a time-shifted connection will not have run, yet.
However, the target simulator might still require input on the connected attribute.
Therefore, you must provide initial_data, which is a dictionary of the attributes of the source simulator and the values they should have for the first step.

In the example above, the result would be a sequential execution of the two simulators.
You can also set the time_shifted flag for both connections, in which case you would get parallel execution of both simulators, with each simulators using the output of the other simulator from the previous step.

Finally, you can set time-shifted to an integer value instead of True.
This will delay data along that connection by that many steps.

Weak connections

Occasionally, you want parts of your simulation to run on a much finer time scale than the rest, without committing to a precise factor between the two.
This is often the case for control strategies that are distributed over two or simulators.

In this case, you can use weak connection.
A weak connection resolves cycles within one time step in much the same way as a time-shifted connection.
However, if the source simulator produces output, this will trigger another step of the target simulator within the same time step.
This might in turn trigger additional of the source simulator again, leading to a so-called same-time loop which runs until one of the simulators interrupts it by not producing output.
(Weak connections therefore only make sense if the target attribute is a trigger attribute.
If it is not, the effect will be identical to a time-shifted connection.)

In most scenarios with same-time loops only some of the simulators will be involved in the loop.
This poses the question when the other simulators are run in relation to them.
In the past, this depended in subtle ways on the order in which connections were made in the scenario script.
Starting with mosaik 3.3, we force you to be more explicit about it.
Weak connections are only allowed between simulators that are part of a common simulator group.
A simulator group can be created using a Python with statement like so:

with world.group():
 sim_a = world.start("A")
 sim_b = world.start("B")
with world.group():
 sim_c = world.start("C")
sim_d = world.start("D")

In this example, simulators A and B are part of a common simulator group, so weak connections between entities of A and B would be admissible.
Simulator C is also part of a group, but its a different group from the one shared by A and B, so weak connections between A (or B) and C would not be allowed.
(You could connect C weakly to itself, though.)
Simulator D is not part of any group and therefore does not support weak connections at all.

Weak connections are implemented by keeping track of a second time component for each simulator within a group.
(This time component is opaque to the simulators.)
When sending data along the weak connection, this sub-time is increased instead of the main time.

Normal (and time-shifted) connections can still be established between simulators within and without the group.
When a connection leaves a group, the corresponding sub-time is forgotten.
For example, suppose that simulator A is connected to simulator D and that it’s the start of the simulation.
As long as A is performing steps within the same-time loop, its main time will stay at 0 and only its sub-time will increase.
Simulator D, being outside of A’s group, does not see A’s sub-time.
It will not consider simulator A’s step 0 to be done, and simulator D therefore will not step.
Once the same-time loop is over, A’s main time will progress at which time D will see the progress and perform its step.

On the other hand, if D were part of A’s group (but still connected non-weakly), it would see A’s sub-time progress right away and therefore perform its step after A’s very first step.
The decision of whether or not to include a simulator in a group therefore depends on how you want the timing to work.

It is in fact possible to nest groups, by nesting the correponding with world.group() blocks.
In this case, each additional group will introduce yet another finer level of time.
Weak connections between two simulators will increase the sub-time component associated to their closest shared group.

Asynchronous requests

This type of connection is deprecated because it couples the involved simulators too closely.

The final option to resolve the cycle is to use asynchronous requests.
For this you only connect the battery’s P to the controller and let the control strategy set the new schedule via the asynchronous request set_data.
To indicate this in your scenario, you set the async_request flag of World.connect to True:

world.connect(battery, controller, 'P', async_requests=True)

This way, mosaik will push the value for P from the battery to the controller.
It will then wait until the controller’s step is done before the next step for the battery will be computed.

The advantage of this approach is that the call of set_data is optional, so you don’t need to send a schedule on every step if there’s no new schedule.
(However, much the same effect can be achieved by using some trigger attributes.)
The disadvantage is that you have to implement the set_data call within the simulator with the specific destination, making it less modular.

The step implementation of the controller could roughly look like this:

class Controller(Simulator):

 def step(self, t, inputs):
 schedule = self._get_schedule(inputs)
 yield self.mosaik.set_data(schedule)
 return t + self.step_size

How to filter entity sets

When you create large-scale scenarios, you often work with large sets of
entities rather than single ones. This section provides some examples how you
can extract a sub-set of entities from a larger entity set based on arbitrary
criteria.

Let’s assume that we have created a power grid with mosaik-pypower [https://pypi.python.org/pypi/mosaik-pypower]:

grid = pypower.Grid(gridfile='data/grid.json').children

Since mosaik-pypower’s Grid entity only serves as a container for the buses
and branches of our power grid, we directly bound its children to the name
grid. So grid is now a list containing a RefBus entity and multiple
Transformer, PQBus and Branch entities.

So how do we get a list of all transformers? This way:

transformers = [e for e in grid if e.type == 'Transformer']

How do we get the single RefBus? This way:

refbus = [e for e in grid if e.type == 'RefBus'][0]

Our PQBus entities are named like Busbar_<i> and ConnectionPoint_<i> to
indicate to which buses we can connect consumers and producers and to which we
shouldn’t connect anything. How do we get a list of all ConnectionPoint
buses? We might be tempted to do it this way:

conpoints = [e for e in grid if e.eid.startswith('ConnectionPoint_')]

The problem in this particular case is, that mosaik-pypower prepends a “grid
ID” to each entity ID, because it can handle multiple grid instances at once.
So our entity IDs are actually looking like this:
<grid_idx>-ConnectionPoint_<i>. Using regular expressions, we can get our
list:

import re

regex_conpoint = re.compile(r'\d+-ConnectionPoint_\d+')

conpoints = [e for e in grid if regex_conpoint.match(e.eid)]

If we want to connect certain consumers or producers to defined nodes in our
grid (e.g., your boss says: “This PV module needs to be connected to
ConnectionPoint_23!”), creating a dict instead of a list is a good idea:

remove_grididx = lambda e: e.eid.split('-', 1)[1] # Little helper function
cps_by_name = {remove_grididx(e): e for e in grid if regex_conpoint.match(e)}

This will create a mapping where the string 'ConnectionPoint_23' maps to
the corresponding Entity instance.

This was just a small selection of how you can filter entity sets using
list/dict comprehensions. Alternatively, you can also use the filter [https://docs.python.org/3/library/functions.html#filter]
function or a normal for loop. You should also take at look at the
itertools [https://docs.python.org/3/library/itertools.html#module-itertools] and functools [https://docs.python.org/3/library/functools.html#module-functools] modules. You’ll find even more
functionality in specialized packages like PyToolz [http://toolz.readthedocs.org/en/latest/index.html].

How to create user-defined connection rules

The method World.connect allows you to only connect one pair of
entities with each other. When you work with larger entity sets, you might not
want to connect every entity manually, but use functions that take to sets of
entities and connect them with each other based on some criteria.

The most common case is that you want to randomly connect the entities of one
set to another, for example, when you distribute a number of PV modules over a
power grid.

For this use case, mosaik provides mosaik.util.connect_randomly. It
takes two sets and connects them either evenly or purely randomly:

world = mosaik.World(sim_config)

grid = pypower.Grid(gridfile=GRID_FILE).children
pq_buses = [e for e in grid if e.type == 'PQBus']
pvs = pvsim.PV.create(20)

Assuming that len(pvs) < len(pq_buses), this will
connect 0 or 1 PV module to each bus:
mosaik.util.connect_randomly(world, pvs, pq_buses, 'P')

This will distribute the PV modules purely randomly, but every
bus will have at most 3 modules connected to it.
mosaik.util.connect_randomly(world, pvs, pq_buses, 'P',
 evenly=False, max_connects=3)

Another relatively common use case is connecting a set of entities to one other
entity, e.g., when you want to connect a number of controllable energy
producers to a central scheduler. For this use case, mosaik provides
mosaik.util.connect_many_to_one

...
pvs = pvsim.PV.create(30)
chps = chpsim.CHP.create(20)
controller = cs.Scheduler()

Connect all producers to the controller, remember to set the
"async_requests" flag.
connect_many_to_one(world, chain(pvs, chps), controller, 'P',
 async_requests=True)

Connection rules are oftentimes highly specific for a project.
connect_randomly and
connect_many_to_one are currently the only functions that
are useful and complicated enough to ship it with mosaik. But writing your own
connection method is not that hard, as you can see in the
connect_many_to_one example:

from itertools import chain

def connect_many_to_one(world, src_set, dest_entity, *attrs,
 async_requests=False):
 for src_entity in src_set:
 world.connect(src_entity, dest_entity, *attrs,
 async_requests=async_requests)

How to retrieve static data from entities

Sometimes, the entities don’t contain all the information that you need in
order to decide which entity connect to which, but your simulation model could
provide that data. An example for this might be the maximum amount of active
power that a producer is able to produce.

Mosaik allows you to query a simulator for that data during composition time
via World.get_data:

>>> example_simulator = world.start('ExampleSim')
Starting "ExampleSim" as "ExampleSim-2" ...
>>> entities = example_simulator.A.create(3, init_val=42)
>>> data = world.get_data(entities, 'val_out')
>>> data[entities[0]]
{'val_out': 42}

The entities that you pass to this function don’t need to belong to the same
simulator (instance) as long as they all can provide the required attributes.

How to access topology and data-flow information

The World contains two networkx Graphs [https://networkx.github.io/documentation/latest/] which hold
information about the data-flows between simulators and the simulation topology
that you created in your scenario. You can use these graphs, for example, to
export the simulation topology that mosaik created into a custom data or file
format.

This is outdated; mosaik now stored information about the data flow
differently. World.df_graph is the directed dataflow graph for your
scenarios. It contains a node for every simulator that you started. The
simulator ID is used to label the nodes. If you established a data-flow between
two simulators (by connecting at least two of their entities), a directed edge
between two nodes is inserted. The edges contain a list of the data-flows as
well as the async_requests, time_shifted, and weak flags
(see How to achieve cyclic data-flows) and the trigger and pred_waiting flags.

The data-flow graph may, for example, look like this:

world.df_graph.node == {
 'PvSim-0': {},
 'PyPower-0': {},
}
world.df_graph.edge == {
 'PvSim-0': {'PyPower-0': {
 'async_requests': False,
 'dataflows': [
 ('PV_0', 'bus_0', ('P_out', 'P'), ('Q_out', 'Q')),
 ('PV_1', 'bus_1', ('P_out', 'P'), ('Q_out', 'Q')),
],
 }},
}

World.entity_graph is the undirected entity graph. It contains a node
for every entity. The full entity ID ('sim_id.entity_id') is used as node
label. Every node also stores the simulator name and entity type. An edge
between two entities is inserted

	if they are somehow related within a simulator (e.g., a PyPower branch is
related to the two PyPower buses to which it is adjacent) (see
create); or

	if they are connected via World.connect.

The entity graph may, for example, look like this:

world.entity_graph.node == {
 'PvSim_0.PV_0': {'sim': 'PvSim', 'type': 'PV'},
 'PvSim_0.PV_1': {'sim': 'PvSim', 'type': 'PV'},
 'PyPower_0.branch_0': {'sim': 'PyPower', 'type': 'Branch'},
 'PyPower_0.bus_0': {'sim': 'PyPower', 'type': 'PQBus'},
 'PyPower_0.bus_1': {'sim': 'PyPower', 'type': 'PQBus'},
}
world.entity_graph.edge == {
 'PvSim_0.PV_0': {'PyPower_0.bus_0': {}},
 'PvSim_0.PV_1': {'PyPower_0.bus_1': {}},
 'PyPower_0.branch_0': {'PyPower_0.bus_0': {}, 'PyPower_0.bus_1': {}},
 'PyPower_0.bus_0': {'PvSim_0.PV_0': {}, 'PyPower_0.branch_0': {}},
 'PyPower_0.bus_1': {'PvSim_0.PV_1': {}, 'PyPower_0.branch_0': {}},
}

The get_related_entities API call also uses and returns (parts of)
the entity graph. So you can access it in your scenario definition as well as
from with a simulator, control strategy or monitoring tool.

Please consult the networkx documentation [http://networkx.github.io/documentation/latest/] for more details about
working with graphs and directed graphs.

How to destroy a world

When you are done working with a world, you should shut it down properly:

>>> world.shutdown()

This will, for instance, close mosaik’s socket and allows new World
instances to reuse the same port again.

World.run automatically calls World.shutdown for you.

How to do real-time simulations

It is very easy to do real-time (or “wall-clock time”) simulations in mosaik.
You just pass an rt_factor to World.run to enable it:

world.run(until=10, rt_factor=1)

A real-time factor of 1 means, that 1 simulation time unit (usually
a simulation second) takes 1 second of real time. Thus, if you set the
real-time factor to 0.5, the simulation will run twice as fast as the real
time. If you set it to 1/60, one simulated minute will take one real-time
second.

It may happen that the simulators are too slow for the real-time factor chosen.
That means, they take longer than, e.g., one second to compute a step when
a real-time factor of one second is set. If this happens, mosaik will by
default just print a warning message to stdout. However, you can also let your
simulation crash in this case by setting the parameter rt_strict to True.
Mosaik will then raise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] if your simulation is too slow:

world.run(until=10, rt_factor=1/60, rt_strict=True)

How to call extra methods of a simulator

A simulator may optionally define additional API methods (see init)
that you can call from your scenario. These methods can implement operations,
like setting some static data to a simulator, which don’t really fit into
init() or create().

These methods are exposed via the model factory that you get when you start
a simulator. In the following example, we’ll call the example_method()
that the example simulator shipped with the mosaik Python API:

>>> world = mosaik.World({'ExampleSim': {
... 'python': 'example_sim.mosaik:ExampleSim'}})
>>> es = world.start('ExampleSim')
Starting "ExampleSim" as "ExampleSim-0" ...
>>>
>>> # Now brace yourself ...
>>> es.example_method(23)
23
>>>
>>> world.shutdown()

 The simulator manager

The simulator manager

The simulator manager (or just sim manager) is responsible for starting and
handling the external simulator processes involved in a simulation as well as
for the communication with them.

Usually, these simulators will be started as separate sub-processes which will
then connect to mosaik via network sockets. This has two benefits:

	Simulators can be written in any language.

	Simulation steps can be performed in parallel, if two processes don’t depend
on each others data.

Simulators written in Python 3 can, for performance reasons, be imported and
executed like normal Python modules. This way, all Sim API calls will be plain
functions calls without the overhead of network communication and message
(de)serialization. However, since Python only runs in one thread at a time,
this will also prevent parallel execution of simulators.

When a (Python 3) simulator is computationally inexpensive, running it
in-process may give you good results. If it performs a lot of expensive
computations, it may be better to start separate processes which can then do
these computations in parallel. In practice, you should try and profile both
ways in order to get the maximum performance out of it.

Sometimes, both ways won’t work because you simply cannot start the simulator
process by yourself. This might be the reason for hardware-in-the-loop or if
a simulator needs to run on a separate machine. In these cases, you can simply
let mosaik connect to a running instance of such a simulator.

Internally, all three kinds of simulator processes (in-process with mosaik,
started by mosaik, connected to by mosaik) are represented by SimProxy
objects so that they all look the same to the other components of mosaik:

[image: The sim manager can import Python simulators, can start simulators as sub-processes and can connect to running instances of a simulator.]The sim manager gets its configuration via the World’s sim_config argument. The sim_config is a dictionary containing simulator
names and description of how to start them:

>>> import mosaik
>>>
>>> sim_config = {
... 'SimA': {
... 'python': 'package.module:SimClass',
... },
... 'SimB': {
... 'cmd': 'java -jar simB.jar %(addr)s',
... 'cwd': 'simB/dist/',
... },
... 'SimC': {
... 'connect': 'localhost:5678',
... },
... }
>>>
>>> world = mosaik.World(sim_config)
>>> world.shutdown()

In the example above, we declare three different simulators. You can freely
choose a name for a simulator. Its configuration should either contain
a python, cmd or connect entry:

Since mosaik 2.3.0 it is possible to pass environment variables to
sub-processes. Using the key env in sim_config allows you to set new
environment variables. That could look like this:

>>> import mosaik
>>>
>>> sim_config = {
... 'SimA': {
... 'python': 'package.module:SimClass',
... 'env': {
... 'PYTHONPATH': 'src/',
... },
... },
... }
>>>
>>> world = mosaik.World(sim_config)
>>> world.shutdown()

	python
	This tells mosaik to run the simulator in process. As a value, you need to
specify the module and class name of the simulator separated by a colon.
In the example, mosaik will import package.module and instantiate sim
= package.module.SimClass(). This only works for simulators written in
Python 3.

	cmd
	This tells mosaik to execute the specified command cmd in order to start a
new sub-process for the simulator.

You can use the placeholder %(python)s to use the same Python interpreter
and virtualenv that mosaik currently uses (see sys.executable [https://docs.python.org/3/library/sys.html#sys.executable]).

In order to create a socket connection to mosaik the simulator needs to know
the address of mosaik’s server socket. Mosaik will pass this address (in the
form host:port) as a command line argument, so you need to include the
placeholder %(addr)s in your command. Mosaik will replace this with the
actual address.

If the simulator should open a seperate console window, the new_console
keyword can be used. This option is only available on Windows machines
and mosaik version >= 3.2.0.

>>> sim_config = {
... 'SimB': {
... 'cmd': 'java -jar simB.jar %(addr)s',
... 'new_console': True,
... },
... }

You can optionally specify a current working directory (cwd). If it is
present, mosaik will change to that directory before executing cmd. Its
default value is '.'.

In our example, mosaik would execute:

$ cd simB/java
$ java -jar simB.jar localhost:5555

in order to start SimB.

Note

Please use for the cwd command and for paths in the cmd call only the UNIX/Linux path notation with slashes even if you are using windows. Do not use backslashes or double backslashes.

	connect
	This tells mosaik to establish a network connection to a running simulator
instance. It will simply connect to host:port – localhost:5678 for
SimC

 Scheduling and simulation execution

Scheduling and simulation execution

When you defined your scenario and start the
simulation, mosaik’s scheduler becomes active. It
manages the execution of all involved simulators, keeps them in sync and
handles the data-flows between them.

Mosaik runs the simulation by stepping simulators through time.
Mosaik uses integers for the representation of time (to avoid rounding errors
etc.). Its unit (to how many seconds one integer step corresponds) can be
defined in the scenario, and is passed to every simulation component via the
init function as key-word parameter time_resolution. It’s
a floating point number and defaults to 1..

Time paradigms

There are various paradigms for time in simulations: discrete time, continuous
time, and discrete event, to name the probably most common ones. Mosaik supports
discrete-time and discrete-event simulations, including the combination of both.
As these concepts are not always strictly distinguishable, we use a slightly
different notation for the simulator’s types, namely time-based, event-based,
and hybrid. It’s not always obvious which type of simulator is the most
appropriate one for a simulator, and in many cases both would be possible. As
a rough guide we could say:

Time-based simulators are more related to the physical world,
where the state, inputs, and outputs of a system are continuous (e.g. active
power of a PV module). The mapping of those continuous signals to discrete
points in time is then somewhat arbitrary (and depends on the desired precision
and the available computing resources). The lower limit for the temporal
resolution in a mosaik scenario is the unit assigned to the integer time steps.

Event-based simulators are related to the cyber world, where the state(s)
of a system can instantaneously change, and inputs and outputs also occur at
a specific point in time (example: sending/receiving of messages in a
communication simulation). The native way of stepping through time would then
be to just jump between all occurring events. In a mosaik simulation the time
of the events have to be rounded to the mosaik’s integer time steps.

Hybrid simulators can represent any kind of combined systems with both
time-based and event-based components.

Advancing through time

Mosaik tracks the current simulation time for every simulator individually. How
simulators step through the time from simulation start to end depends on their
stepping type described above:

Time-based simulators

When the simulation starts, all time-based (and hybrid) simulators are at time 0. When it asks
a simulator to perform its next step, it passes its current simulation time
tnow to it. After its step, the simulator returns the time at which it
wants to perform its next step (tnext). Thus, a simulator’s step size
doesn’t need to be constant but can vary during the simulation.

All data that a time-based simulator computes during a step is valid for the right-open
interval [tnow, tnext) as shown in the following figure.

[image: Time-based scheduling]
Schematic execution of a time-based simulator A. tnow, tnext and
the validity interval for its first step 0 are shown. The figure also shows
that the step size of a simulator may vary during the simulation.

Event-based simulators

The stepping through time of event-based simulators is rather different.
Event-based simulators are stepped at all times an event is created at. These
events can either be created by other simulators that are connected to this
simulator via providing the connected attribute, or the simulator can also
schedule events for itself via the step function’s return value.
The output provided by event-based simulators is only valid for a specific
point in time, by default for the current time of the step, or for any later
time if explicitly set via the (optional) output time. Providing the output
attributes is optional for event-based simulators. As consequence a simulator
connected to a specific attribute is only triggered/stepped if the output is
actually provided. See the API description for
implementation details.
Event-based simulators do not necessarily start at time 0, but whenever their
first event is scheduled, either by other simulators or via
World.set_initial_event from
the scenario definition.

[image: Event-based scheduling]
Schematic execution of an event-based simulation. Depending on A’s
actual output a step of B is triggered (or not), at A’s step time or
later. Simulator A also schedules itself.

Note that it is possible that a simulator is stepped several times at a
specific point in time. See Same-time loops for details.

Synchronization and data-flows

If there are data-flows between two simulators (because you connected some of
their entities), a simulator can only perform a step if all input data has been
computed.

Let’s assume we created a data-flow from a simulator A to a simulator B and
B wants to perform a step from tnow(B). Mosaik determines which
simulators provide input data for B. This is only A in this example. In
order to provide data for B, A needs to step far enough to produce data for
tnow(B), that means tnext(A) > tnow(B) as the
following figure illustrates.

[image: t_next(A) must be greater then t_now(B) in order for B to step.]
(a) B cannot yet step because A has not progressed far enough yet
(tnext(A) <= tnow(B)).

(b) B can perform its next step, because A now has progressed far
enough (tnext(A) > tnow(B)).

When this condition is met for all simulators providing input for B, mosaik
collects all input data for B that is valid at tnow(B) (you could
say it takes one snapshot of the global simulation state). It passes
this data to B. Based upon this (and only this) data, B performs its step
[tnow(B), tnext(B)).

This is relatively easy to understand if A and B have the same step size,
as the following figures shows:

[image: Dataflow from A to B where both simulators have the same step size.]
In this example, A and B have the same step size. Mosaik steps them
in an alternating order starting with A, because it provides the input
data for B.

If B had a larger step size than A, A would produce new data while B
steps. B would still only use the data that was valid at tnow(B),
because it only “measures” its inputs once at the beginning of its step:

[image: Dataflow from A to B where B has a larger step size.]
In this example, B has a larger step size. It doesn’t consume all data
that A produces, because it only gets data once at the beginning of its
step.

On the other hand, if A had a larger step size than B, we would reuse the
same data from A multiple times as long as it is valid:

[image: Dataflow from A to B where A has a larger step size.]
In this example, A has a larger step size. B reuses the same data
multiple times because it is still valid.

The last two examples may look like special cases, but they actually arise from
the approach explained above.

How far is a simulator allowed to advance its time?

As described in the API documentation, mosaik tells the
simulator each step how far it is allowed to advance its internal simulation
time via the max_advance argument. It is guaranteed that no step will be
scheduled until then (inclusively), unless the simulator activates a
triggering dependency loop earlier than that.
Mosaik deduces this from the simulation topology and the progress of the
simulators. Note that the simulator will not necessarily be stepped at
max_advance + 1 as this will only happen if the predecessor actually
provides the connected output attribute(s).

As time-based simulators (or hybrid ones without any triggering input) only
decide themselves when they are stepped, max_advance is always equal to the
end of the simulation for those. But of course they will most likely miss some
updates of the input data if their step size is too large and not synchronized
with their input providers. In order not to miss any input update, you can
change the type of the simulator to hybrid. Then the simulator will be
stepped on each update.

Note

The max_advance value is not necessarily appropriate for real-time simulations as it does not consider eventual steps which are scheduled via the asynchronous set_event() method.

How data flows through mosaik

After a simulator is done with its step, mosaik determines, based on the
data-flows that you created in your scenario, which data other simulators need
from it. It makes a get_data() API call to the simulator and stores the data
that this call returns in an internal buffer. It also memorizes for which
time this data is valid.

Before a simulator steps, mosaik determines in a similar fashion what input
data the simulator needs. Mosaik checks if all input-providing simulators have
stepped far enough to (potentially) provide that data and waits otherwise.
After that all input data is collected and then passed to the inputs
parameter of the step() API call.

It is important to understand that simulators don’t talk to each other directly
but that all data flows through mosaik were it can be cached and managed.

Cyclic data-flows

Sometimes the simulated system requires cyclic data-flows between components, e.g. a control
mechanism (C) that controls another entity (E) based on its state, e.g. by sending commands
or a schedule.

It is not possible to perform both data-flows (the state from E to C and
the commands/schedule from C to E) at the same time because they depend on
each other (yes, this is similar to the chicken or egg dilemma).

The cycle can be resolved by first stepping E (e.g., from t = 0 to t
= 1). E’s state for that interval can then be used as input for C ’s
step for the same interval. The commands/schedule that C generates for E
will then be used in E’s next step. This results in a serial execution,
also called Gauss-Seidel scheme.

[image: Serial cyclic data-flow between, e.g. between a controller and a controlled entity.]
In this example, a controlled entity E provides state data to the
controller C. The commands or schedule from C is used by E in its next
step.

This resolution of the cycle makes sense if you think how this would work in
real life. The controller would measure the data from the controlled unit at
a certain point t. It would then do some calculation which take a certain
amount of time Δt which would be send to the controlled unit at t + Δt.

However, mosaik is not able to automatically resolve that cycle. That’s why you
are not allowed to connect(E, C) and connect(C, E) in a scenario. This can be done
via the time-shifted connection
connect(C, E, (‘c_out’, ‘a_in’), time_shifted=True, initial_data={‘c_out’: 0}),
which tells mosaik that the output of C is to be used for E’s next time step(s) afterwards.
As for the first step (at time 0) this data cannot be provided yet, you have to set it via the
initial_data argument. In this case, the initial data for ‘a_in’ is 0.

Another way to resolve this cycle is to allow async. requests via the async_requests flag
connect(E, C, async_requests=True) and use the
asynchronous callback set_data() in C’s step() implementation in order to send the commands or schedule from C
to E. The advantage of this approach is that the call of set_data is optional, i.e. the commands
or schedules don’t need to be sent on every step.

If you set the time_shifted flag for both connections, the simulators can be
executed in parallel (Jacobi scheme). Note that a computationally parallel
execution is only possible for simulators that are not run in-process.

[image: Parallel cyclic data-flow.]
In this example, two entities are running in parallel. The outputs of each
simulator are used by the other one in its next step afterwards.

You can take a look at our discussion of design decisions for details.

Same-time (algebraic) loops

Sometimes, simulators need to exchange data back and forth at the same time before they
can step to their next time step. Such same-time loop can be defined via a weak
connection. In the connect statement, the connection is marked as weak, e.g. via
world.connect(agent, model, 'delta', weak=True).

Loops which are closed by a weak connection can be run multiple times within
the same mosaik time step, as weak connections do not necessarily imply a
temporal progress. This can be used for example to only advance the simulation time
when the state has converged to a stable solution. To activate (and also stay
in) a same-time cycle, a simulator has to provide its ‘cyclic’ attribute(s) via
the get_data function and indicating as output time the current
step time. To escape the cycle, the attribute(s) in the get_data’s return
dictionary have to be omitted or a time later than the step’s time indicated.
An example scenario for this is shown in a tutorial.

[image: Same-time loops]
A same-time loop with three repetitions between simulator A and B.

To prevent the loop to be run infinite times, mosaik raises a runtime error
when a certain number of iterations within one time step has been reached. The
default maximum iteration count is 100 and can be adjusted via the
max_loop_iterations parameter within the scenario definition if needed (see
mosaik.scenario.World).

Stepping and simulation duration

By now you should have a general idea of how mosaik handles data-flows between
simulators. You should also have the idea that simulators only perform a step
when all input-providing simulators have stepped far enough. But what if they
don’t have any (connected) inputs? In this section you’ll learn about the
algorithm that mosaik uses to determine whether a simulator can be stepped or
not.

[image: Simulator process]
Sim-process running for each simulator in parallel

This is how it works:

	Should there be a next step at all? *

Yes: Go to step 2.

No: Stop the simulator.

* We’ll explain how to answer this question below.

2. Is a next step already scheduled, either self-scheduled via step or
by triggering input?

Yes: Go to step 3.

No: Wait until a next step is set. Then go to step 3.

	Have all dependent simulators stepped far enough?

Yes: Go to step 4.

No: Wait for all dependencies. Then go step 4.

	Collect all required input data.

	Send collected input data to simulator, perform the simulation step and
eventually get the time of a next step.

	Get all data from this simulator that are connected to other simulators and
store it internally.

	Notify other simulators that already wait for this simulator. If there’s
any output which is connected to a triggering input of another simulator,
schedule new steps for it (at output time).

So how do we determine whether a simulator must perform another step or it is
done?

When we start the simulation, we pass a time unto which our simulation should
run (world.run(until=END)). Usually a simulator is done if the time of its
next step is equal or larger than the value of until. This is, however, not
true for all simulators in a simulation. If no one needs the data of a
simulator step, why perform this step?

So the actual algorithm is as follows:

If a simulator has no outgoing data-flows (no other simulator needs its data)
it simulates until the condition tnext > tuntil is met or
none of the simulators which could trigger a step are running anymore.

Else, if a simulator needs to provide data for other simulators, it keeps
running until all of these simulators have stopped.

 Upgrading from mosaik 2 to 3

Upgrading from mosaik 2 to 3

Mosaik 3 has some new features which required some API changes. For the time
being simulators implementing mosaik-api 3 are still supported, but you will
get a deprecation warning at the beginning. In case that you don’t want to use
any of the new features you could stay with mosaik 2.
But otherwise the upgrade to mosaik 3 is quite easy, as you will see in the
following sections:

Component’s type

Simulation components now have a type (time-based, event-based, or
hybrid) to indicate which simulation time paradigm they implement. See
details here. The type is set in the component’s meta
data, which the component returns to mosaik via the API’s
init function.

Time resolution

A global time resolution is now defined for each
scenario indicating how to translate mosaik’s integer time to simulated time.
It can be set at the instantiation of the simulation’s World in the
setup of the scenario and is set to 1. by
default. It’s value is passed to the components via the init
function.

Max_advance time

max_advance tells the simulator how far it can advance its time without
risking any causality error, i.e. it is guaranteed that no external step will
be triggered before max_advance + 1. It is determined for each step and passed
to the component as third positional argument of the API’s step
function.

Sticking with mosaik 2

In case that you don’t want to upgrade to mosaik 3, the mosaik dependency must
be pinned to version 2.x.

When installing mosaik with pip, you get the latest mosaik 2.x version via:

pip install 'mosaik<3'

You can also specify this constraint in a requirements files [https://pip.pypa.io/en/stable/user_guide/#requirements-files]:

mosaik<3

Or in the install_requires list in a setup.py file:

setup(
 ...
 install_requires=['mosaik<3'],
 ...
)

 FAQ

FAQ

This is a list of some questions we recently got. If you cannot find an answer
for your questions here, you are welcome to post it on our mailing list [http://mosaik.offis.de/mailinglist].

General questions

Are there graphical tools for scenario design?

Maverig, an environment for graphical analysis as well as scenario design has
been developed and is currently in a prototypical state. It may be used for
demonstration purposes, but its maintenance and further development is not our
top priority right now. Please understand, if the installation guide is not
up-to-date with the newest package versions.
However, we argue that graphical tools are not feasible for the design of large
and complex scenarios. For most applications the more flexible scenario design
by code is advantageous.

Is there a mosaik-Wiki?

We like Wikis but consider them the wrong tool for documenting software (and
we are not alone with that [http://stevelosh.com/blog/2013/09/teach-dont-tell/]).

There are a lot of other resources, though:

	All documentation is concentrated here, at Read the Docs.

	Source code [https://gitlab.com/mosaik/mosaik] and issues [https://gitlab.com/mosaik/mosaik/-/issues] are managed by GitLab.

	Discussion takes place in our mailing list [http://mosaik.offis.de/mailinglist].

	News are spread through our blog [http://mosaik.offis.de/blog].

There’s not much that a wiki could add here.

Coupling models with mosaik

Can I use continuous models with mosaik?

Yes. Since mosaik 2 you can even use a variable step size for your simulator
that can dynamically change during the simulation.

Can I use mosaik only with Python programs?

No, mosaik can be used with any language that provides network sockets [http://en.wikipedia.org/wiki/Network_socket] and
ways to (de)serialize JSON [http://en.wikipedia.org/wiki/JSON].

Since implementing network event loops and message (de)serialization is
repetitive work and unnecessary overhead, we provide so called high-level
APIs for certain languages that provide a base class that you can inherit and
just need to implement a few methods representing the API calls.

Currently, high-level API are available for Python, JAVA, and C#,
but an implementation for C++ will follow soon.

Can I use my MATLAB/Simulink models with mosaik? How do I do it?

Yes, you can. We will provide an example soon. In the end, if you manage to
let your model communicate via sockets and are capable of
serializing/deserializing JSON data objects you can use it with mosaik (see
Can I use mosaik only with Python programs? for details).

The mosaik demo

I can only see active power values in the web visualization. Does mosaik also support reactive power values with PyPower?

Of course, it only depends on your models. The basic models distributed
with mosaik 2 only produce active power outputs (cos phi = 1), so we don’t
display reactive power.

What are the power grid’s parameters? How are the cables’/lines’ parameters formatted?

Check https://gitlab.com/mosaik/mosaik-pypower under “input file format”.
Typically, line values are given in R per km and X per km.

Port 8000 on my local machine is already in use. How can I see the visualisation with WebVis?

Port 8000 is used as default when using WebVis. You can overwrite the default
value in demo.py.

...
sim_config = {
 ...
 'WebVis': {
 'cmd': 'mosaik-web -s 0.0.0.0:8000 %(addr)s',
 },
}
...

 Developer’s Documentation

Developer’s Documentation

Contents:

	Discussion of design decisions

	Logo and corporate identity

 Discussion of design decisions

Discussion of design decisions

On this page, we discuss some of the design decisions that we made. This should
explain why some features are (not) present and why they work the way that they
work.

Note

For the sake of readability, some concepts are simplified in the following
sections. For example, the snippet connect(A, B) means we’re connecting
some entities of a simulator A to some entities of simulator B;
simulator and entity are used as if they were the same concept;
A.step() means, that mosaik calls the step() function of
simulator/entity A.

Here are the topics:

	Circular data-flows

	Same-time loops for control cycles

	The category of tiered intervals

Circular data-flows

Circular data-flows were one of the harder problems to solve.

When you connect the entities of two simulators with each other, mosaik tracks
the new dependency between these simulators:

connect(A, B)

A would now provide input data for B. When mosaik runs the simulation, the
step for a certain time t would first be computed for A and then for B
with the inputs of A.

In order to connect control strategies (like multi-agent systems) with
to-be-controlled entities, you usually need a circular data-flow. The entity
provides state information for the controller which in turn sends new commands
or schedules to the controlled entity. The naïve way of doing this would be:

connect(A, B, 'state')
connect(B, A, 'schedule')

A would receive schedules via the inputs of A.step(). In A.step(), it
would compute new state information which mosaik would get via A.get_data().
Mosaik would forward this to the inputs of B.step(). B.step() would
calculate some schedules, which mosaik would again get via B.get_data() and
pass to A.step() …

The question that arise here is: Which simulator do we step first – A or B?
Mosaik has no clue. You could say that A needs to step first, because the
data-flow from A to B was established first. However, if you re-arrange
your code and (accidentally) flip both lines, you would get a different
behavior and a very hard to find bug.

What do we learn from that? We need to explicitly tell mosaik how to resolve
these cycles and prohibit normal circular data-flows as in the snippet above.

Mosaik provides two ways for this. The first is via time-shifted connections:

connect(A, B, 'state')
connect(B, A, 'schedule', time_shifted=True)

This tells mosaik how to resolve the cycle and throws an error if you
accidentally flip both lines.

Theoretically, we could be done here. But we aren’t. The data-flows in the
example above are passive, meaning that A and B compute data hoping that
someone will use them. This abstraction works reasonably well for normal
simulation models, but control mechanism usually have an active role. They
actively decide whether or not to send commands to the entities they control.

Accordingly, mosaik provides ways for control mechanisms and monitoring tools
to actively collect more data from the simulation and set data to other
entities. These means are implemented as asyncronous requests that a simulator can perform during its step.
Similar to the cyclic data-flows, this requires you to tell mosaik about it to
prevent some scheduling problems:

connect(A, B, async_requests=True)

This prevents A from stepping too far into the future so that B can get
additional data from or set new data to A in B.step().

Since you can set data via an asynchronous request, you can implement cyclic
data-flows with it:

connect(A, B, 'state', async_requests=True)

The implementation of A.step() and A.get_data() would be the same. In
B.step() you would still receive the state information from A and compute
the schedules. However, you wouldn’t store them somewhere so that
B.get_data() can return them. Instead, you would just pass them actively to
set_data(). Mosaik stores that data in a special input_buffer of A which
will be added to the input of A’s next step.

So to wrap this up, there are two possibilities to achieve cyclic data-flows:

	Passive controller:

connect(A, B, 'state')
connect(B, A, 'schedules', time_shifted=True)

B.step() computes schedules and caches them somewhere. Mosaik gets these
schedules via B.get_data() and sends them to A.

If you forget to set the time_shifted=True flag, mosaik will raise an
error at composition time.

If you forget the second connect(), nothing will happen with the
schedules. You may not notice this for a while.

	Active controller:

connect(A, B, 'state', async_requests=True)

B.step() computes schedules and immediately passes them to set_data().
Mosaik sends them to A.

If you forget to set the async_requests=True flag, mosaik will raise an
error at simulation time.

Same-time loops for control cycles

The first implementation of same-time loops was pretty ad-hoc and therefore showed some difficult-to-explain behavior.
In particular, the order in which simulators in a same-time loop would trigger each other depended in subtle ways on the order in which connections were established.
(The execution order was governed by the rank of a simulator, which was calculated using a topological sort method from networkx.)

As a first solution, we attempted a concept of dense time, where each internal time stamp had two components, called time and micro step.
Only the time component is communicated to the simulators, whereas the micro step component is only used internally.
Progress along weak connections would only increase the micro step component, allowing simulators to perform multiple steps in one time step, while still preserving an order for all steps.

Unfortunately, a very common control structure that usually happened to work under the old scheme was not possible anymore:
The simplest version of the case in question is when there are two simulators that communicate via a same-time loop and which then send the result of their negotiation to a third simulator.
Because users would normally create the connections for the negotiation part earlier in their scenario, the corresponding same-time loop would run first, leading to the expected result.
With the dense-time setup, the third simulator would instead run at micro step 0, and thus only receive the results of the first round of negotiation.

To resolve this problem, we introduce a concept of simulator groups.
A user can create a group in their script using a with statement like

with world.group():
 world.start("SimulatorA")
 world.start("SimulatorB")

All simulators started in the with block are automatically added to the group.
Users can nest groups by nesting the with world.group() blocks.
(Using the with statement has the advantage that users cannot nest the groups incorrectly.)

Each group adds an additional tier to the internal times used for simulators contained within, leading to a concept of tiered time.
(The simulators still only get to see the highest level.)
When a connection leaves a group (i.e. leads from a simulator in a group to a simulator not in that group), the corresponding part of the time is cut off.
This results in the simulator outside the group not seeing the steps inside the group.
It therefore only considers the steps of its inputs done when the simulators in the group progress their actual time, i.e. when they conclude their negotiation.

Similarly, a time entering a group will be padded with zeros at the end.

To force users to update their simulations (so they don’t silently start producing completely different results), we decided to outlaw weak connections outside of groups.
A user using weak connections will receive an error message leading them to the documentation that explains how to adapt their scenario.

The category of tiered intervals

This is additional mathematical information on tiered time.

Times are used in two different ways:
They can represent specific points in the simulation or they can represent intervals of time.
Previously, both of these concepts were represented by the same data structure internally.
With tiered time, we also introduce tiered interval, so tiered times now only represent points in time.
It is legal to add an interval to a time, and to add two intervals, but it is not legal to add two times.

Speaking of intervals, there are three basic types:

	Connections within a group keep the number of tiers fixed an just add something to some tiers (usually nothing at all, or 1 to the first tier for time-shifted connections, or 1 to the last tier for weak connections).

	Connections leaving a group cut off some tiers at the end.

	Connections entering a group add some tiers at the end.

When calculating the progression within the simulation, it becomes necessary to add these types of intervals together, leading to mixed types.
Therefore, a tiered interval consists of:

	A list of addition tiers.
These are added to the corresponding tiers of the tiered time.
All further tiers of the tiered time are cut off.

	A list of extension tiers.
There are appended to the result of the addition and cutoff.

	A pre-length, which is used as a sanity check.
The pre-length must equal the number of tiers of the time to which the interval is added.
Also, the pre-length serves as an upper bound for the number of addition tiers, so that the time always has enough components to add to.

The addition rules for intervals are set up such that adding two intervals to a time one after the other is the same as adding the sum of the two intervals to the time, and such that the addition of intervals is associative.
(Mathematically, this turns tiered times and intervals into a category with sets of tiered times of the same length as objects and tiered intervals as arrows.)

 Logo and corporate identity

Logo and corporate identity

This page contains download links to the mosaik logos and lists the official
mosaik colors.

Normal logo

This is the large version of the logo.

PNG, 1920 × 1052 px, with transparency

[image: mosaik logo in PNG format]

SVG for the web

Letters converted to objects so that it nicely renders on all devices.

[image: mosaik logo in SVG format for the web]

Simple logo

The simple variant of the logo should be used when the display size for the
logo is so small, that the icons would not be recognizable very well, e.g. in
the headers of letters or papers.

PNG, 512 × 280 px, with transparency

[image: Simple mosaik logo in PNG format]

SVG for the web

Letters converted to objects so that it nicely renders on all devices.

[image: Simple mosaik logo in SVG format for the web]

SVG for Inkscape

This is the Inkscape master file for the logo. In order to edit it in Inkscape,
you need to install the Aller font [http://www.fontsquirrel.com/fonts/Aller].

[image: Simple mosaik-logo in SVG format for editing in Inkscape]

Icon

This version should be used for (program) Icons.

PNG, 512 × 512 px, with transparency

[image: mosaik icon in PNG format]

SVG

[image: mosaik icon in SVG format]

Colors

	Value ranges RGB:
	[0-255] [0-255] [0-255]

	Value ranges HSB/HSL:
	[0-359]° [0-100]% [0-100]%

mosaik logo

These colors are usually only used in the logo.

	Mod.

	Green

	Orange

	Red

	Purple

	Blue

	Gray

	CMYK

	28 0 70 49

	0 35 75 15

	0 85 85 28

	0 60 0 43

	70 21 0 12

	0 0 0 72

	RGB

	94 130 39

	217 141 54

	184 28 28

	145 58 145

	59 154 196

	72 72 72

	LAB

	50 -27 43

	65 22 56

	40 59 42

	40 48 -31

	60 -14 -30

	31 0 0

	HSB

	84 70 51

	32 75 85

	0 85 72

	300 60 57

	198 70 77

	0 0 28

	HSL

	84 54 33

	32 68 53

	0 74 42

	300 43 30

	198 54 50

	0 0 28

	HEX

	#5E8227

	#D98D36

	#B81C1C

	#913A91

	#3B9AC4

	#484848

mosaik dark

These colors are usually used for figures, diagrams and in presentations.

	Mod.

	Green

	Orange

	Red

	Purple

	Blue

	Gray

	CMYK

	28 0 70 49

	0 37 81 34

	0 80 80 29

	0 60 0 43

	70 21 0 50

	0 0 0 72

	RGB

	94 130 39

	168 105 32

	181 36 36

	145 58 145

	38 101 128

	72 72 72

	LAB

	50 -27 43

	50 19 49

	40 56 38

	40 48 -31

	40 -11 -21

	31 0 0

	HSB

	84 70 51

	32 81 66

	0 80 71

	300 60 57

	198 70 50

	0 0 28

	HSL

	84 54 33

	32 68 39

	0 67 43

	300 43 30

	198 54 33

	0 0 28

	HEX

	#5E8227

	#A86920

	#B52424

	#913A91

	#266580

	#484848

 API Reference

API Reference

The API reference provides detailed descriptions of mosaik’s classes and
functions. It should be helpful if you plan to extend mosaik with custom
components.

	mosaik — The end-user API

	mosaik.exceptions — mosaik specific error types
	ScenarioError

	SimulationError

	mosaik.scenario — Classes related to the scenario creation
	SimConfig

	PythonModel

	ConnectModel

	CmdModel

	World
	World.until

	World.rt_factor

	World.tqdm

	World.sim_config

	World.config

	World.sims

	World.time_resolution

	World.max_loop_iterations

	World.entity_graph

	World.sim_progress

	World.start

	World.connect

	World.set_initial_event

	World.get_data

	World.run

	World.cache_triggering_ancestors

	World.ensure_no_dataflow_cycles

	World.shutdown

	ModelFactory

	ModelMock
	ModelMock.create

	Entity
	Entity.sid

	Entity.eid

	Entity.sim_name

	Entity.model_mock

	Entity.children

	Entity.full_id

	mosaik.scheduler — Coordinate and execute simulators
	run

	sim_process

	rt_sleep

	wait_for_dependencies

	get_input_data

	get_max_advance

	step

	rt_check

	get_outputs

	notify_dependencies

	prune_dataflow_cache

	get_progress

	get_avg_progress

	mosaik.simmanager — Management of external processes
	MosaikConfigTotal

	start

	start_inproc

	start_proc

	start_connect

	Port

	SimRunner
	SimRunner.rt_start

	SimRunner.output_time

	SimRunner.data

	SimRunner.sid

	SimRunner.last_step

	SimRunner.next_steps

	SimRunner.next_self_step

	SimRunner.progress

	SimRunner.inputs_from_set_data

	SimRunner.persistent_inputs

	SimRunner.timed_input_buffer

	SimRunner.triggering_ancestors

	SimRunner.triggers

	SimRunner.output_to_push

	SimRunner.pulled_inputs

	SimRunner.task

	SimRunner.input_delays

	SimRunner.schedule_step

	SimRunner.stop

	MosaikRemote
	MosaikRemote.get_progress

	MosaikRemote.get_related_entities

	MosaikRemote.get_data

	MosaikRemote.set_data

	MosaikRemote.set_event

	StarterCollection

	TimedInputBuffer

	mosaik.util — Utility classes and functions
	connect_many_to_one

	connect_randomly

	plot_execution_time

	plot_dataflow_graph

	plot_execution_graph

	plot_execution_time_per_simulator

	mosaik.basic_simulators — Basic simulators
	InputSimulator

	OutputSimulator
	OutputSimulator.get_dict

 mosaik — The end-user API

mosaik — The end-user API

This module provides convenient access to all classes and functions required
to create scenarios and run simulations.

Currently, this is only mosaik.scenario.World.

 mosaik.exceptions — mosaik specific error types

mosaik.exceptions — mosaik specific error types

This module provides mosaik specific exception types.

	
class mosaik.exceptions.ScenarioError[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/exceptions.py]

	This exception is raised if something fails during the creation of
a scenario.

	
class mosaik.exceptions.SimulationError(msg, exc=None)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/exceptions.py]

	This exception is raised if a simulator cannot be started or if
a problem arises during the execution of a simulation.

	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	exc (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

 mosaik.scenario — Classes related to the scenario creation

mosaik.scenario — Classes related to the scenario creation

This module provides the interface for users to create simulation scenarios for
mosaik.

The World holds all necessary data for the simulation and allows the
user to start simulators. It provides a ModelFactory (and
a ModelMock) via which the user can instantiate model instances
(entities). The method World.run finally starts the simulation.

	
mosaik.scenario.SimConfig[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Description of all the simulators you intend to use in your
simulation.

alias of Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][PythonModel, ConnectModel, CmdModel]]

	
typeddict mosaik.scenario.PythonModel[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	typing.TypedDict [https://docs.python.org/3/library/typing.html#typing.TypedDict].

	Required Keys:

	
	python (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Simulator subclass for this simulator, encoded as a string module_name:ClassName.

	Optional Keys:

	
	env (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – The environment variables to set for this simulator.

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The current working directory for this simulator.

	api_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The API version of the connected simulator. Set this to suppress warnings about this simulator being outdated.

	posix (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to split the given shell command using POSIX rules. (Default: False on Windows, True otherwise.)

	
typeddict mosaik.scenario.ConnectModel[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	typing.TypedDict [https://docs.python.org/3/library/typing.html#typing.TypedDict].

	Required Keys:

	
	connect (str [https://docs.python.org/3/library/stdtypes.html#str]) – The host:port address for this simulator.

	Optional Keys:

	
	env (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – The environment variables to set for this simulator.

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The current working directory for this simulator.

	api_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The API version of the connected simulator. Set this to suppress warnings about this simulator being outdated.

	posix (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to split the given shell command using POSIX rules. (Default: False on Windows, True otherwise.)

	
typeddict mosaik.scenario.CmdModel[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	typing.TypedDict [https://docs.python.org/3/library/typing.html#typing.TypedDict].

	Required Keys:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The command to start this simulator. String %(python)s will be replaced by the python command used to start this scenario, %(addr)s will be replaced by the host:port combination to which the simulator should connect.

	Optional Keys:

	
	env (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – The environment variables to set for this simulator.

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – The current working directory for this simulator.

	api_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The API version of the connected simulator. Set this to suppress warnings about this simulator being outdated.

	posix (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to split the given shell command using POSIX rules. (Default: False on Windows, True otherwise.)

	
class mosaik.scenario.World(sim_config, mosaik_config=None, time_resolution=1.0, debug=False, cache=True, max_loop_iterations=100, asyncio_loop=None)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The world holds all data required to specify and run the scenario.

It provides a method to start a simulator process (start) and
manages the simulator instances.

You have to provide a sim_config which tells the world which simulators
are available and how to start them. See mosaik.simmanager.start
for more details.

mosaik_config can be a dict or list of key-value pairs to set addional
parameters overriding the defaults:

{
 'addr': ('127.0.0.1', 5555),
 'start_timeout': 2, # seconds
 'stop_timeout': 2, # seconds
}

Here, addr is the network address that mosaik will bind its socket to.
start_timeout and stop_timeout specifiy a timeout (in seconds) for
starting/stopping external simulator processes.

If execution_graph is set to True, an execution graph will be created
during the simulation. This may be useful for debugging and testing. Note,
that this increases the memory consumption and simulation time.

	Parameters:

	
	sim_config (SimConfig) –

	mosaik_config (Optional[MosaikConfig]) –

	time_resolution (float [https://docs.python.org/3/library/functions.html#float]) –

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) –

	cache (bool [https://docs.python.org/3/library/functions.html#bool]) –

	max_loop_iterations (int [https://docs.python.org/3/library/functions.html#int]) –

	asyncio_loop (Optional[asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop]]) –

	
until: int [https://docs.python.org/3/library/functions.html#int][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The time until which this simulation will run.

	
rt_factor: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The number of real-time seconds corresponding to one mosaik step.

	
tqdm: tqdm[NoReturn][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The tqdm progress bar for the total progress.

	
sim_config: SimConfig[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The config dictionary that tells mosaik how to start a simulator.

	
config: MosaikConfigTotal[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The config dictionary for general mosaik settings.

	
sims: Dict[SimId, simmanager.SimRunner][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	A dictionary of already started simulators instances.

	
time_resolution: float [https://docs.python.org/3/library/functions.html#float][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The number of seconds that correspond to one mosaik time step in
this situation. The default value is 1.0, meaning that one integer
step corresponds to one second simulated time.

	
max_loop_iterations: int [https://docs.python.org/3/library/functions.html#int][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The number of iterations allowed for same-time loops within one
time step. This is checked to prevent accidental infinite loops.
Increase this value if your same-time loops require many iterations
to converge.

	
entity_graph: networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph][FullId][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph] of related entities.
Nodes are (sid, eid) tuples. Each note has an attribute
entity with an Entity.

	
sim_progress: float [https://docs.python.org/3/library/functions.html#float][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The progress of the entire simulation (in percent).

	
start(sim_name, sim_id=None, **sim_params)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Start the simulator named sim_name and return a
ModelFactory for it.

	Parameters:

	
	sim_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	sim_id (str [https://docs.python.org/3/library/stdtypes.html#str] | None) –

	sim_params (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	Return type:

	ModelFactory

	
connect(src, dest, *attr_pairs, async_requests=False, time_shifted=False, initial_data={}, weak=False)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Connect the src entity to dest entity.

Establish a data-flow for each (src_attr, dest_attr) tuple in
attr_pairs. If src_attr and dest_attr have the same name, you
you can optionally only pass one of them as a single string.

Raise a ScenarioError if both entities share
the same simulator instance, if at least one (src. or dest.) attribute
in attr_pairs does not exist, or if the connection would introduce
a cycle in the data-flow (e.g., A → B → C → A).

If the dest simulator may make asynchronous requests to mosaik to
query data from src (or set data to it), async_requests should be
set to True so that the src simulator stays in sync with dest.

An alternative to asynchronous requests are time-shifted connections.
Their data flow is always resolved after normal connections so that
cycles in the data-flow can be realized without introducing deadlocks.
For such a connection time_shifted should be set to True and
initial_data should contain a dict with input data for the first
simulation step of the receiving simulator.

An alternative to using async_requests to realize cyclic data-flow
is given by the time_shifted kwarg. If set to True it marks the
connection as cycle-closing (e.g. C → A). It must always be used with
initial_data specifying a dict with the data sent to the destination
simulator at the first step (e.g. {‘src_attr’: value}).

	Parameters:

	
	src (Entity) –

	dest (Entity) –

	attr_pairs (str [https://docs.python.org/3/library/stdtypes.html#str] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	async_requests (bool [https://docs.python.org/3/library/functions.html#bool]) –

	time_shifted (bool [https://docs.python.org/3/library/functions.html#bool] | int [https://docs.python.org/3/library/functions.html#int]) –

	initial_data (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) –

	weak (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
set_initial_event(sid, time=0)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Set an initial step for simulator sid at time time (default=0).

	Parameters:

	
	sid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	time (int [https://docs.python.org/3/library/functions.html#int]) –

	
get_data(entity_set, *attributes)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Get and return the values of all attributes for each entity of an
entity_set.

The return value is a dict mapping the entities of entity_set to
dicts containing the values of each attribute in attributes:

{
 Entity(...): {
 'attr_1': 'val_1',
 'attr_2': 'val_2',
 ...
 },
 ...
}

	Parameters:

	
	entity_set (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Entity]) –

	attributes (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Entity, Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
run(until, rt_factor=None, rt_strict=False, print_progress=True, lazy_stepping=True)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Start the simulation until the simulation time until is
reached.

Before this method returns, it stops all simulators and closes
mosaik’s server socket. So this method should only be called
once.

	Parameters:

	
	until (int [https://docs.python.org/3/library/functions.html#int]) – The end of the simulation in mosaik time steps
(exclusive).

	rt_factor (float [https://docs.python.org/3/library/functions.html#float] | None) – The real-time factor. If set to a number > 0,
the simulation will run in real-time mode. A real-time
factor of 1. means that 1 second in simulated time takes
1 second in real time. An real-time factor of 0.5 will let
the simulation run twice as fast as real time. For correct
behavior of the real-time factor, the time resolution of the
scenario has to be set adequately (the default is 1 second).

	rt_strict (bool [https://docs.python.org/3/library/functions.html#bool]) – If the simulators are too slow for the
real-time factor you chose, mosaik will only print a warning
by default. In order to raise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] instead,
you can set rt_strict to True.

	print_progress (bool [https://docs.python.org/3/library/functions.html#bool] | Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['individual']) – Whether progress bars are printed while
the simulation is running. The default is to print one bar
representing the global progress of the simulation. You can
also set the value to 'individual' to get one bar per
simulator in your simulation (in addition to the global
one). A value of False turns off the progress bars
completely.

The progress bars use
tqdm [https://pypi.org/project/tqdm/]; see their
documentation on how to write to the console without
interfering with the bars.

	lazy_stepping (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to prevent simulators from running
ahead of their successors by more than one step. If
False a simulator always steps as long all input is
provided. This might decrease the simulation time but
increase the memory consumption.

	
cache_triggering_ancestors()[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Collects the ancestors of each simulator and stores them in
the respective simulator object.

	
ensure_no_dataflow_cycles()[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Make sure that there is no cyclic dataflow with 0 total
delay. Raise an exception with one such cycle otherwise.

	
shutdown()[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Shut-down all simulators and close the server socket.

	
class mosaik.scenario.ModelFactory(world, group, sid, proxy)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	This is a facade for a simulator sim that allows the user to create
new model instances (entities) within that simulator.

For every model that a simulator publicly exposes, the ModelFactory
provides a ModelMock attribute that actually creates the entities.

If you access an attribute that is not a model or if the model is not
marked as public, an ScenarioError is raised.

	Parameters:

	
	world (World) –

	group (SimGroup) –

	sid (SimId) –

	proxy (Proxy) –

	
class mosaik.scenario.ModelMock(world, factory, model, proxy)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Instances of this class are exposed as attributes of
ModelFactory and allow the instantiation of simulator models.

You can call an instance of this class to create exactly one entity:
sim.ModelName(x=23). Alternatively, you can use the create
method to create multiple entities with the same set of parameters at once:
sim.ModelName.create(3, x=23).

	Parameters:

	
	world (World) –

	factory (ModelFactory) –

	model (ModelName) –

	proxy (Proxy) –

	
create(num, **model_params)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Create num entities with the specified model_params and return
a list with the entity dicts.

The returned list of entities is the same as returned by
mosaik_api_v3.Simulator.create, but the simulator is prepended
to every entity ID to make them globally unique.

	Parameters:

	
	num (int [https://docs.python.org/3/library/functions.html#int]) –

	model_params (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	
class mosaik.scenario.Entity(sid, eid, sim_name, model_mock, children, extra_info=None)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	An entity represents an instance of a simulation model within mosaik.

	Parameters:

	
	sid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	eid (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	sim_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	model_mock (ModelMock) –

	children (List [https://docs.python.org/3/library/typing.html#typing.List][Entity]) –

	extra_info (Any [https://docs.python.org/3/library/typing.html#typing.Any]) –

	
sid: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The ID of the simulator this entity belongs to.

	
eid: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The entity’s ID.

	
sim_name: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The entity’s simulator name.

	
model_mock: ModelMock[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	The entity’s type (or class).

	
children: List [https://docs.python.org/3/library/typing.html#typing.List][Entity][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	An entity set containing subordinate entities.

	
property full_id: str [https://docs.python.org/3/library/stdtypes.html#str][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scenario.py]

	Full, globally unique entity id sid.eid.

 mosaik.scheduler — Coordinate and execute simulators

mosaik.scheduler — Coordinate and execute simulators

This module is responsible for performing the simulation of a scenario.

	
async mosaik.scheduler.run(world, until, rt_factor=None, rt_strict=False, lazy_stepping=True)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Run the simulation for a World until
the simulation time until has been reached.

Return the final simulation time.

See mosaik.scenario.World.run for a detailed description of the
rt_factor and rt_strict arguments.

	Parameters:

	
	world (World) –

	until (int [https://docs.python.org/3/library/functions.html#int]) –

	rt_factor (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	rt_strict (bool [https://docs.python.org/3/library/functions.html#bool]) –

	lazy_stepping (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
async mosaik.scheduler.sim_process(world, sim, until, rt_factor, rt_strict, lazy_stepping)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Coroutine running the simulator sim.

	Parameters:

	
	world (World) –

	sim (SimRunner) –

	until (int [https://docs.python.org/3/library/functions.html#int]) –

	rt_factor (Optional[float [https://docs.python.org/3/library/functions.html#float]]) –

	rt_strict (bool [https://docs.python.org/3/library/functions.html#bool]) –

	lazy_stepping (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
async mosaik.scheduler.rt_sleep(sim, world)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	If in real-time mode, check if to sleep and do so if necessary.

	Parameters:

	
	sim (SimRunner) –

	world (World) –

	Return type:

	None

	
async mosaik.scheduler.wait_for_dependencies(sim, lazy_stepping)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Wait until all simulators that can provide input for this simulator have run for
this step.

Also notify any simulator that is already waiting to perform its next step.

world is a mosaik World.

	Parameters:

	
	sim (SimRunner) –

	lazy_stepping (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Return type:

	None

	
mosaik.scheduler.get_input_data(world, sim)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Return a dictionary with the input data for sim.

The dict will look like:

{
 'eid': {
 'attrname': {'src_eid_0': val_0, ... 'src_eid_n': val_n},
 ...
 },
 ...
}

For every entity, there is an entry in the dict and each entry is itself
a dict with attributes and a list of values. This is, because we may have
inputs from multiple simulators (e.g., different consumers that provide
loads for a node in a power grid) and cannot know how to aggregate that
data (sum, max, …?).

world is a mosaik World.

	Parameters:

	
	world (World) –

	sim (SimRunner) –

	Return type:

	InputData

	
mosaik.scheduler.get_max_advance(world, sim, until)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Checks how far sim can safely advance its internal time during next step
without causing a causality error.

	Parameters:

	
	world (World) –

	sim (SimRunner) –

	until (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
async mosaik.scheduler.step(world, sim, inputs, max_advance)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Advance (step) a simulator sim with the given inputs. Return an
event that is triggered when the step was performed.

inputs is a dictionary, that maps entity IDs to data dictionaries which
map attribute names to lists of values (see get_input_data).

max_advance is the simulation time until the simulator can safely advance
it’s internal time without causing any causality errors.

	Parameters:

	
	world (World) –

	sim (SimRunner) –

	inputs (InputData) –

	max_advance (int [https://docs.python.org/3/library/functions.html#int]) –

	
mosaik.scheduler.rt_check(rt_factor, rt_start, rt_strict, sim)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Check if simulation is fast enough for a given real-time factor.

	Parameters:

	
	rt_factor (float [https://docs.python.org/3/library/functions.html#float] | None) –

	rt_start (float [https://docs.python.org/3/library/functions.html#float]) –

	rt_strict (bool [https://docs.python.org/3/library/functions.html#bool]) –

	sim (SimRunner) –

	
async mosaik.scheduler.get_outputs(world, sim)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Wait for all required output data from a simulator sim.

world is a mosaik World.

	Parameters:

	
	world (World) –

	sim (SimRunner) –

	
mosaik.scheduler.notify_dependencies(sim)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Notify all simulators waiting for us.

	Parameters:

	sim (SimRunner) –

	Return type:

	None

	
mosaik.scheduler.prune_dataflow_cache(world)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Prunes the dataflow cache.

	Parameters:

	world (World) –

	
mosaik.scheduler.get_progress(sims, until)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Return the current progress of the simulation in percent.

	Parameters:

	
	sims (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], SimRunner]) –

	until (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
mosaik.scheduler.get_avg_progress(sims, until)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/scheduler.py]

	Get the average progress of all simulations (in time steps).

	Parameters:

	
	sims (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], SimRunner]) –

	until (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

 mosaik.simmanager — Management of external processes

mosaik.simmanager — Management of external processes

The simulation manager is responsible for starting simulation processes and
shutting them down. It also manages the communication between mosaik and the
processes.

It is able to start pure Python simulators in-process (by importing and
instantiating them), to start external simulation processes and to connect to
already running simulators and manage access to them.

	
typeddict mosaik.simmanager.MosaikConfigTotal[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	A total version for :cls:`MosaikConfig` for internal use.

	Required Keys:

	
	addr (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Optional[int [https://docs.python.org/3/library/functions.html#int]]])

	start_timeout (float [https://docs.python.org/3/library/functions.html#float])

	stop_timeout (float [https://docs.python.org/3/library/functions.html#float])

	
async mosaik.simmanager.start(world, sim_name, sim_id, time_resolution, sim_params)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Start the simulator sim_name based on the configuration im
world.sim_config, give it the ID sim_id and pass the time_resolution
and the parameters of the dict sim_params to it.

The sim config is a dictionary with one entry for every simulator. The
entry itself tells mosaik how to start the simulator:

{
 'ExampleSimA': {
 'python': 'example_sim.mosaik:ExampleSim',
 },
 'ExampleSimB': {
 'cmd': 'example_sim %(addr)s',
 'cwd': '.',
 },
 'ExampleSimC': {
 'connect': 'host:port',
 },
}

ExampleSimA is a pure Python simulator. Mosaik will import the module
example_sim.mosaik and instantiate the class ExampleSim to start
the simulator.

ExampleSimB would be started by executing the command example_sim and
passing the network address of mosaik das command line argument. You can
optionally specify a current working directory. It defaults to ..

ExampleSimC can not be started by mosaik, so mosaik tries to connect to
it.

time_resolution (in seconds) is a global scenario parameter, which tells
the simulators what the integer time step means in seconds. Its default
value is 1., meaning one integer step corresponds to one second simulated
time.

The function returns a mosaik_api_v3.Simulator instance.

It raises a SimulationError if the simulator
could not be started.

Return a SimProxy instance.

	Parameters:

	
	world (World) –

	sim_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	sim_id (SimId) –

	time_resolution (float [https://docs.python.org/3/library/functions.html#float]) –

	sim_params (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) –

	Return type:

	Proxy

	
async mosaik.simmanager.start_inproc(mosaik_config, sim_name, sim_config, mosaik_remote)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Import and instantiate the Python simulator sim_name based on its
config entry sim_config.

Return a LocalProcess instance.

Raise a ScenarioError if the simulator cannot be
instantiated.

	Parameters:

	
	mosaik_config (MosaikConfigTotal) –

	sim_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	sim_config (PythonModel) –

	mosaik_remote (MosaikRemote) –

	Return type:

	BaseProxy

	
async mosaik.simmanager.start_proc(mosaik_config, sim_name, sim_config, mosaik_remote)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Start a new process for simulator sim_name based on its config entry
sim_config.

Return a RemoteProcess instance.

Raise a ScenarioError if the simulator cannot be
instantiated.

	Parameters:

	
	mosaik_config (MosaikConfigTotal) –

	sim_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	sim_config (CmdModel) –

	mosaik_remote (MosaikRemote) –

	Return type:

	BaseProxy

	
async mosaik.simmanager.start_connect(mosaik_config, sim_name, sim_config, mosaik_remote)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Connect to the already running simulator sim_name based on its config
entry sim_config.

Return a RemoteProcess instance.

Raise a ScenarioError if the simulator cannot be
instantiated.

	Parameters:

	
	mosaik_config (MosaikConfigTotal) –

	sim_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	sim_config (ConnectModel) –

	mosaik_remote (MosaikRemote) –

	Return type:

	BaseProxy

	
mosaik.simmanager.Port[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Pair of an entity ID and an attribute of that entity

alias of Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
class mosaik.simmanager.SimRunner(sid, connection, depth=1)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Handler for an external simulator.

It stores its simulation state and own the proxy object to the external
simulator.

	Parameters:

	
	sid (SimId) –

	connection (Proxy) –

	depth (int [https://docs.python.org/3/library/functions.html#int]) –

	
rt_start: float [https://docs.python.org/3/library/functions.html#float][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	The real time when this simulator started (as returned by
perf_counter().

	
output_time: TieredTime[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	The output time associated with data. Usually, this will be equal to
last_step but simulators may specify a different time for their output.

	
data: OutputData[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	The newest data returned by this simulator.

	
sid: SimId[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	This simulator’s ID.

	
last_step: TieredTime[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	The most recent step this simulator performed.

	
next_steps: List[TieredTime][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	The scheduled next steps this simulator will take, organized as a heap.
Once the immediate next step has been chosen (and the has_next_step event
has been triggered), the step is moved to next_step instead.

	
next_self_step: TieredTime | None [https://docs.python.org/3/library/constants.html#None][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	The next self-scheduled step for this simulator.

	
progress: Progress[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	This simulator’s progress in mosaik time.

This simulator has done all its work before time progress, so
other simulator can rely on this simulator’s output until this time.

	
inputs_from_set_data: InputData[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Inputs received via set_data.

	
persistent_inputs: InputData[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Memory of previous inputs for persistent attributes.

	
timed_input_buffer: TimedInputBuffer[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Inputs for this simulator.

	
triggering_ancestors: Dict[SimRunner, TieredInterval][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	An iterable of this sim’s ancestors that can trigger a step of
this simulator. The second component specifies the least amount of
time that output from the ancestor needs to reach us.

	
triggers: Dict[Port, List[Tuple[SimRunner, TieredInterval]]][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	For each port of this simulator, the simulators that are
triggered by output on that port and the delay accrued along that
edge.

	
output_to_push: Dict[Port, List[Tuple[SimRunner, TieredInterval, Port]]][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	This lists those connections that use the timed_input_buffer.
The keys are the entity-attribute pairs of this simulator with
the corresponding list of simulator-time-entity-attribute triples
describing the destinations for that data and the time-shift
occuring along the connection.

	
pulled_inputs: Dict[Tuple[SimRunner, TieredInterval], Set[Tuple[Port, Port]]][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Output to pull in whenever this simulator performs a step.
The keys are the source SimRunner and the time shift, the values
are the source and destination entity-attribute pairs.

	
task: asyncio.Task [https://docs.python.org/3/library/asyncio-task.html#asyncio.Task][None [https://docs.python.org/3/library/constants.html#None]][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	The asyncio.Task for this simulator.

	
input_delays: Dict[SimRunner, TieredInterval][source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	For each simulator that provides data to this simulator, the
minimum over all input delays. This is used while waiting for
dependencies.

	
schedule_step(tiered_time)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Schedule a step for this simulator at the given time. This
will trigger a re-evaluation whether this simulator’s next
step is settled, provided that the new step is earlier than the
old one and the simulator is currently awaiting it’s next
settled step.

	Parameters:

	tiered_time (TieredTime) –

	
async stop()[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Stop the simulator behind the proxy.

	
class mosaik.simmanager.MosaikRemote(world, sid)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	
	Parameters:

	
	world (World) –

	sid (SimId) –

	
async get_progress()[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Return the current simulation progress from
sim_progress.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
async get_related_entities(entities=None)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Return information about the related entities of entities.

If entities omitted (or None), return the complete entity
graph, e.g.:

{
 'nodes': {
 'sid_0.eid_0': {'type': 'A'},
 'sid_0.eid_1': {'type': 'B'},
 'sid_1.eid_0': {'type': 'C'},
 },
 'edges': [
 ['sid_0.eid_0', 'sid_1.eid0', {}],
 ['sid_0.eid_1', 'sid_1.eid0', {}],
],
}

If entities is a single string (e.g., sid_1.eid_0), return a dict
containing all entities related to that entity:

{
 'sid_0.eid_0': {'type': 'A'},
 'sid_0.eid_1': {'type': 'B'},
}

If entities is a list of entity IDs (e.g., ['sid_0.eid_0',
'sid_0.eid_1']), return a dict mapping each entity to a dict of
related entities:

{
 'sid_0.eid_0': {
 'sid_1.eid_0': {'type': 'B'},
 },
 'sid_0.eid_1': {
 'sid_1.eid_1': {'type': 'B'},
 },
}

	Parameters:

	entities (str [https://docs.python.org/3/library/stdtypes.html#str] | List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] | None) –

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]

	
async get_data(attrs)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Return the data for the requested attributes attrs.

attrs is a dict of (fully qualified) entity IDs mapping to lists
of attribute names ({'sid/eid': ['attr1', 'attr2']}).

The return value is a dictionary, which maps the input entity IDs to
data dictionaries, which in turn map attribute names to their
respective values:
({'sid/eid': {'attr1': val1, 'attr2': val2}}).

	Parameters:

	attrs (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) –

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	
async set_data(data)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Set data as input data for all affected simulators.

data is a dictionary mapping source entity IDs to destination entity
IDs with dictionaries of attributes and values ({'src_full_id':
{'dest_full_id': {'attr1': 'val1', 'attr2': 'val2'}}}).

	Parameters:

	data (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) –

	
async set_event(event_time)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	Schedules an event/step at simulation time event_time.

	Parameters:

	event_time (int [https://docs.python.org/3/library/functions.html#int]) –

	
class mosaik.simmanager.StarterCollection[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	This class provides a singleton instance of a collection of simulation
starters. Default starters are:
- python: start_inproc
- cmd: start_proc
- connect: start_connect

External packages may add additional methods of starting simulations by
adding new elements:

from mosaik.simmanager import StarterCollection
s = StarterCollection()
s[‘my_starter’] = my_starter_func

	Return type:

	OrderedDict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable[…, Coroutine[Any, Any, BaseProxy]]]

	
class mosaik.simmanager.TimedInputBuffer[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/simmanager.py]

	A buffer to store inputs with its corresponding time.

When the data is queried for a specific step time, all entries with
time <= step are added to the input_dictionary.

If there are several entries for the same connection at the same time, only
the most recent value is added.

 mosaik.util — Utility classes and functions

mosaik.util — Utility classes and functions

This module contains some utility functions and classes.

	
mosaik.util.connect_many_to_one(world, src_set, dest, *attrs, async_requests=False)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/util.py]

	connect each entity in src_set
to dest.

See the connect for more details.

	Parameters:

	
	world (World) –

	src_set (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Entity]) –

	dest (Entity) –

	attrs (str [https://docs.python.org/3/library/stdtypes.html#str] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	async_requests (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
mosaik.util.connect_randomly(world, src_set, dest_set, *attrs, evenly=True, max_connects=inf)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/util.py]

	Randomly connect the entities from
src_set to the entities from dest_set and return a subset of dest_set
containing all entities with a connection.

world is an instance of the World to which the
entities belong.

src_set and dest_set are iterables containing
Entity instances. src_set may be empty,
dest_set must not be empty. Each entity of src_set will be connected to
an entity of dest_set, but not every entity of dest_set will
necessarily have a connection (e.g., if you connect a set of three entities
to a set of four entities). A set of all entities from dest_set, to which
at least one entity from src_set was connected, will be returned.

attrs is a list of attribute names of pairs as in
connect.

If the flag evenly is set to True, entities connections will be
distributed as evenly as possible. That means if you connect a set of three
entities to a set of three entities, there will be three 1:1 connections;
if you connect four entities to three entities, there will be one 2:1 and
two 1:1 connections. If evenly is set to False, connections will be
truly random. That means if you connect three entities to three entities,
you may either have three 1:1 connections, one 2:1 and two 1:1 connections
or just one 3:1 connection.

max_connects lets you set the maximum number of connections that an
entity of dest_set may receive. This argument is only taken into account
if evenly is set to False.

	Parameters:

	
	world (World) –

	src_set (MutableSequence [https://docs.python.org/3/library/typing.html#typing.MutableSequence][Entity]) –

	dest_set (MutableSequence [https://docs.python.org/3/library/typing.html#typing.MutableSequence][Entity]) –

	attrs (str [https://docs.python.org/3/library/stdtypes.html#str] | Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) –

	evenly (bool [https://docs.python.org/3/library/functions.html#bool]) –

	max_connects (int [https://docs.python.org/3/library/functions.html#int]) –

	
mosaik.util.plot_execution_time(world, folder='figures', hdf5path=None, dpi=600, format='png', show_plot=True, slice=None)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/util.py]

	Creates an image visualizing the execution time of the different
simulators of a mosaik scenario.

	Parameters:

	
	world (World) – mosaik world object

	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – folder to store the image (only if no hdf5path is
provided)

	hdf5path (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Path to HDF5 file, which will be used as path for
the created image

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – DPI for created images

	format (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['png', 'pdf', 'svg']) – format for created image

	show_plot (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to open a window to show the plot

	slice (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | None) – reduce the timeframe that you show in the plot. Usage
as in Python list slicing, i.e., negative values are possible to
start from the end of the list. Jumps are not possible.
slice needs to be a two-element integer list, e.g.
(0, 5).

	Returns:

	None but image file will be written to file system

	
mosaik.util.plot_dataflow_graph(world, folder='figures', hdf5path=None, dpi=600, format='png', show_plot=True)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/util.py]

	Creates an image visualizing the data flow graph of a mosaik
scenario. Using the spring layout from Matplotlib (Fruchterman-
Reingold force-directed algorithm) to position the nodes.

	Parameters:

	
	world (World) – mosaik world object

	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – folder to store the image (only if no hdf5path is
provided)

	hdf5path (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Path to HDF5 file, which will be used as path for
the created image

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – DPI for created images

	format (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['png', 'pdf', 'svg']) – format for created image

	show_plot (bool [https://docs.python.org/3/library/functions.html#bool]) – whether open a window to show the plot

	Returns:

	None but image file will be written to file
system

	
mosaik.util.plot_execution_graph(world, title='', folder='figures', hdf5path=None, dpi=600, format='png', show_plot=True, save_plot=True, slice=None)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/util.py]

	Creates an image visualizing the execution graph of a mosaik
scenario.

	Parameters:

	
	world (World) – mosaik world object

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – the title of the graph

	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – folder to store the image (only if no hdf5path is
provided)

	hdf5path (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Path to HDF5 file, which will be used as path for
the created image

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – DPI for created images

	format (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['png', 'pdf', 'svg']) – format for created image

	show_plot (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to open a window to show the plot

	slice (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | None) – reduce the timeframe that you show in the plot.
Usage as in Python list slicing, i.e., negative values are
possible to start from the end of the list. Jumps are not
possible. slice needs to be a two-element integer tuple,
e.g. (0, 5).

	save_plot (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Returns:

	None but image file will be written to file system

	
mosaik.util.plot_execution_time_per_simulator(world, folder='figures', hdf5path=None, dpi=600, format='png', show_plot=True, plot_per_simulator=False, slice=None)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/util.py]

	Creates images visualizing the execution time of each of the
different simulators of a mosaik scenario.

	Parameters:

	
	world (World) – mosaik world object

	folder (str [https://docs.python.org/3/library/stdtypes.html#str]) – folder to store the image (only if no hdf5path is
provided)

	hdf5path (str [https://docs.python.org/3/library/stdtypes.html#str] | None) – Path to HDF5 file, which will be used as path for
the created image

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – DPI for created images

	format (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['png', 'pdf', 'svg']) – format for created image

	show_plot (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to open a window to show the plot

	plot_per_simulator (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to create a separated plot per
simulator. This is especially useful if the step sizes of the
simulators are very different.

	slice (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | None) – reduce the timeframe that you show in the plot. Usage
as in Python list slicing, i.e., negative values are possible to
start from the end of the list. Jumps are not possible.
slice needs to be a two-element integer tuple, e.g.
(0, 5).

	Returns:

	None but image file will be written to file system

 mosaik.basic_simulators — Basic simulators

mosaik.basic_simulators — Basic simulators

	
class mosaik.basic_simulators.InputSimulator[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/basic_simulators.py]

	This simulator gives a steady input to a connected simulator.
This input can either be an constant value or given by a custom
function based on the current time.

When starting the simulator, a custom step size may be provided
using the step_size parameter. The default is 1.

When creating a Constant entity, the constant must be passed as
the parameter constant.

When creating a Function entity, a function should be passed as
the function parameter. This function should take the current
mosaik time and return the desired value. This type of entity only
works when the simulator is started using the “python” method.

In either case, the entity will produce its output on the value
attribute.

	
class mosaik.basic_simulators.OutputSimulator[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/basic_simulators.py]

	This simulator takes the input it is given and writes it into a python dictionary
where the keys are the timestamps of the input and the values are the inputs values.

The dictionary can be retrieved using the get_dict method.

	
get_dict(eid)[source] [https://gitlab.com/mosaik/mosaik/-/blob/develop/mosaik/basic_simulators.py]

	Returns the dict of the simulator entity specified by the eid.

	Parameters:

	eid (str [https://docs.python.org/3/library/stdtypes.html#str]) – The entity id of the selected entity.

	Returns:

	The dict of the entity.

	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][int [https://docs.python.org/3/library/functions.html#int], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

 About mosaik

About mosaik

The latest version of mosaik is 3.3.0 and it is licensed under LGPL [http://www.gnu.org/licenses/lgpl-3.0.en.html].

Contents:

	Acknowledgments

	The history of mosaik

 Acknowledgments

Acknowledgments

A lot of people were involved in the creation of mosaik and mosaik wouldn’t be
what it is today without any of them:

	Martin Tröschel and Astrid Nieße had the original idea for a tool that
lets you integrate existing simulators to perform large-scale Smart Grid
simulations. They also accompanied mosaik’s development many years as group
and project leaders and provided the necessary time and resources for
mosaik’s development.

	Steffen Schütte wrote his PhD around mosaik. He and Stefan Scherfke
are the primary authors of mosaik 1.

	Ontje Lünsdorf not only contributed code to mosaik 1, but also a lot
of ideas. He held countless discussions with Steffen and Stefan whose results
often greatly improved mosaik.

	Stefan Scherfke is the primary author of mosaik 2.0 and 2.1.

	Sebastian Rohjans and Sebastian Lehnhoff accompanied mosaik’s development
as group and scientific leaders. They also put lots of effort into making
mosaik open-source software.

	Okko Nannen and Florian Schlögl joined the team in May / July 2014.

We’d also like to thank everyone who worked with mosaik and gave us feedback to
make it better.

 The history of mosaik

The history of mosaik

Our work on mosaik started on July 15th, 2010 – at least, the initial
commit happened on that day. Since then, we’ve come a long way …

3.3.0 - 2024-01-17

	[NEW] A simulator can now be connected to itself if the connection is weak or time_shifted (https://gitlab.com/mosaik/mosaik/-/issues/156)

	[NEW] mosaik now provides a couple of basic simulators (https://gitlab.com/mosaik/mosaik/-/issues/192 , https://mosaik.readthedocs.io/en/latest/ecosystem/index.html#mosaik-basic-simulators)

	[NEW] Simulators can return extra_info for their entities to be used in scenario script (https://gitlab.com/mosaik/mosaik/-/issues/197)

	[IMPROVEMENT] Internal rework and refactoring of the time handling in mosaik (https://gitlab.com/mosaik/mosaik/-/issues/162)

3.2.0 - 2023-08-31

	[NEW] Visualizations for the simulation debug information (https://gitlab.com/mosaik/mosaik/-/issues/173)

	[NEW] Allow to open a new console for simulator (https://gitlab.com/mosaik/mosaik/-/issues/84)

	[FIX] Lift restriction of only one weak connection per cycle (https://gitlab.com/mosaik/mosaik/-/issues/151)

	[FIX] Incorrect triggering when adding several edges (https://gitlab.com/mosaik/mosaik/-/issues/92)

	[IMPROVEMENT] Switch from simpy to asycnio (https://gitlab.com/mosaik/mosaik/-/issues/103)

	[CHANGE] Removed support for Python 3.7, added support for Python 3.11 (https://gitlab.com/mosaik/mosaik/-/issues/171)

3.1.1 - 2023-01-11

	[FIX] Fix compatibilty with mosaik 2 simulators (https://gitlab.com/mosaik/mosaik/-/issues/152)

3.1.0 - 2022-11-23

	[NEW] Add progress bar to visualize simulation progress (https://gitlab.com/mosaik/mosaik/-/merge_requests/58)

	[NEW] Add type annotations (https://gitlab.com/mosaik/mosaik/-/issues/107)

	[NEW] Add proper logging (https://gitlab.com/mosaik/mosaik/-/issues/98)

	[DEPRECATED] Deprecated tags for set_data und async_requests (https://gitlab.com/mosaik/mosaik/-/issues/102)

	[CHANGE] Improved benchmarks with new result table (https://gitlab.com/mosaik/mosaik/-/issues/94)

	[FIX] Unexpected behavior of (time-based) simulators whose output is not used anymore (https://gitlab.com/mosaik/mosaik/-/issues/90)

	[FIX] Lazy stepping does not work (https://gitlab.com/mosaik/mosaik/-/issues/89)

	[FIX] Negative max_advance values in same time loop (https://gitlab.com/mosaik/mosaik/-/issues/82)

	[FIX] Initial data for time-shifted connection for hybrid simulator (https://gitlab.com/mosaik/mosaik/-/issues/81)

	[FIX] Bug related to None value for “dest_sim.next_step” in particular connection structure (https://gitlab.com/mosaik/mosaik/-/issues/80)

3.0.2 - 2022-06-01

	[CHANGE] Updated mosaik-api version to 3.0.2

3.0.1 - 2022-05-02

	[CHANGE] Set external events via highlevel function call

	[FIX] Allow PATCH version to be included in the mosaik-api version format

3.0.0 - 2021-06-07

	This is a major upgrade to improve the discrete-event capabilities. Simulators’ steps
can now also be triggered by the output of other simulators.

	[NEW] Native support of discrete-event simulations

	[NEW] A global time resolution can be set for the scenario.

	[NEW] Simulators can request steps asynchronously via set_event() to react to external events.

	[NEW] Ability to specify output data as non-persistent (i.e. transient)

	[CHANGE] New api 3:
- Simulators have now a type (‘time-based’|’event-based’|’hybrid’).
- time_resolution is passed as argument of the init function.
- max_advance is passed as argument of the step function.

	[CHANGE] Update of the documentation

2.6.1 - 2021-06-04

	[CHANGE] Updated ReadTheDocs to support versioning

	[CHANGE] Updated setup: mosaik-api>=2.3,<3

	[CHANGE] Updated networkx version to 2.5

2.6.0 - 2020-05-08

	[NEW] The print of the simulation progress is now optional and can be disabled via a flag
world.run(END, print_progress=False).

	[NEW] Additional starters can now be added via external packages (the standard ones are
‘python’, ‘cmd’, and ‘connect’).

2.5.3 - 2020-04-30

	[FIX] Constrain simpy version to <4.0.0 due to simpy.io incompatibility

	[CHANGE] Updated Odysseus tutorial

	[CHANGE] Eliminated shifted_cache which reduces memory consumption

2.5.2 - 2019-11-01

	[NEW] Special characters are now allowed in path names

	[NEW] Compatible to the new versions of networkx

	[CHANGE] python 3.6, 3.7 and 3.8 are currently supported, python 3.4 and 3.5 not anymore.

	[FIX] Various minor internal changes

	[FIX] Various documentation updates and fixes

2.5.1 - 2018-11-29

	[NEW] When calling the world.start() command for a simulator, users can now set a predefined
value for the posix flag (e.g. True) to prevent automatic detection of the operating system.
This facilitates the creation of some co-simulation cases across OS (e.g. Windows and Linux).

2.5.0 - 2018-09-05

	[NEW] Connection option “time_shifted” added as alternative to async_requests. This will
make creating cyclic data dependencies between simulators more usable since usage of
set_data with an API implementation will no longer be needed.

2.4.0 - 2017-12-06

	[NEW] Compatible to the new versions of networkx, simpy and simpy.io

	[CHANGE] python 3.4, 3.5 and 3.6 are currently supported python 3.3 is no longer supported

	[FIX] Various bug fixes

2.3.0 - 2016-04-26

	[NEW] Allow passing environment vars to sup processes

	[FIX] Fixed a bug in the version validation which raised an error when using
a floating point for the version

2.2.0 - 2016-02-15

	[NEW] API version 2.2: Added an optional “setup_done()” method.

	[CHANGE] API version validation: The API version is no longer an integer but
a “major.minor” string. The major part has to math with mosaiks major
version. The minor part may be lower or equal to mosaik’s minor version.

	[FIX] Various minor fixes and stability improvements.

	[FIX] Various docuentation updates and fixes.

2.1 – 2014-10-24

	[NEW] Mosaik can now perform real-time simulations. Before, this
functionality needed to be implemented by simulators. Now it’s just
World.run(until=x, rt_factor=y), where rt_factor defines the
simulation speed relative to the wall-clock time (issue #24).

	[NEW] Simulators can now expose extra methods via their API that can be
called from a mosaik scenario. This allows you to, e.g., store static data in
a data base. These extra API methods need to be specified in the simulator’s
meta data (issue #26).

	[NEW] util.connect_many_to_one() helper function.

	[NEW] More and better documentation:

	Tutorial for integrating simulators, control strategies and for creating
scenarios.

	Sim API description

	Scenario API description

	Sim Manager documentation

	Scheduler documentation

	Discussion of design decisions

	Logo, colors, CI

	[NEW] Added util.sync_call() which eases calling proxied methods of
a simulator synchronously.

	[CHANGE] The rel attribute in the entity description returned by create()
is now optional.

	[CHANGE] Moved proxied methods from SimProxy to SimProxy.proxy in
order to avoid potential name clashes with other attributes.

	[CHANGE] Check a simulator’s models and extra API methods for potential name
clashes with the built-in API methods.

	[CHANGE] The argument execution_graph of World was renamed to debug.
The execution graph now also stores the time after a simulation step (in
addition to the time before the step).

	[FIX] issue #22: The asynchronous requests get_data() and set_data()
now check if the async_requests flag was set in World.connect().

	[FIX] issue #23: finalize() is now called for in-process Python
simulators.

	[FIX] issue #27: Dramatically improved simulation performance (30 times as
fast in some cases) if simulators use different step sizes (e.g. 1 minute and
1 hour) by improving some internal data structures.

2.0 – 2014-09-22

	[NEW] Updated documentation

	[CHANGE] Separated mosaik’s package and API version. The former stays
a string with a semantic version number; the later is now a simple integer
(issue #17).

	[CHANGE] Start/stop timeout for simulators was raised from 2 to 10 seconds.

	[CHANGE] Updated the mosaik logo. It now uses the flat colors and has some
improved icon graphics.

	[CHANGE] Renamed mosaik.simulator to mosaik.scheduler.

	[CHANGE] Entity and the World’s entity graph now store their simulator
name.

	[FIX] issue #16: Mosaik now always prints the name of the simulator if it
closes its socket.

2.0a4 – 2014-07-31

	[NEW] The model meta data may now contain the any_inputs which, if set
to True, allows any attribute to be connected to that model (useful for
databases and alike).

	[CHANGE] The dictionary of input values in the API’s step() call now
also contains the source of a particular value. This is also usefull to for
databases. This may break existing simulators.

	[CHANGE] “.” is now used as separator in full entiy IDs instead of “/”
(issue #19).

2.0a3 – 2014-06-26

	[NEW] Hierarchical entities: Entities can now have a list of child entities
(issue #14).

	[NEW] The World class now has a get_data() method that allows you to
get data from entities while creating a scenario.

	[NEW] World.connect(a, b, ('X', 'X')) can now be simplified to
World.connect(a, b, 'X').

	[NEW] Attribute Entity.full_id which uniquely identifies an entity:
'<sid>/<eid>'

	[NEW] Attribute ModelFactory.meta which is the meta data dictionary of
a simulator.

	[NEW] World() now accepts a configuration dictionary which can, e.g.,
specify the network address for mosaik.

	[NEW] Overview section for the docs

	[NEW] Description of the mosaik API in the docs

	[CHANGE] When you create entities, mosaik checks if the model parameters
actually exists and raises an error if not (issue #9).

	[CHANGE] The mosaik API’s init() function now receives the simulator ID
as first argument (issue #15).

	[CHANGE] The behavior of the get_related_entities() RPC that simulators
can perform has been changed.

	[CHANGE] Various internal improvements

	[FIX] issue #18. Improved the error message if a Python simulator could
not be imported.

	[REMOVED] Attribute Entity.rel.

2.0a2 – 2014-05-05

	[NEW] Preliminary documentation and installation instructions
(https://mosaik.readthedocs.org)

	[NEW] Simulators can now set data to other simulators using the
asynchronous request set_data (issue #1).

	[NEW] There is now a start timeout for external processes (issue #11).

	[CHANGE] Mosaik now raises an error if a simulator uses the wrong API version
(issue #4).

	[CHANGE] Mosaik prints everything to stdout instead of using the Python
logging module (issue #7).

	[FIX] issue #2. Scheduling now works properly for processes using async.
requests. New keyword argument async_requests for World.connect().

	[FIX] issue #3. Local (in-process) Simulators can now also perform async.
requests to mosaik (get_progress, get_related_entities, get_data,
set_data).

	[FIX] issue #8. Cleaned up the code a bit.

	[FIX] issue #10. Tests for the sim manager improved.

2.0a1 – 2014-03-26

	Mosaik 2 is a complete rewrite of mosaik 1 in order to improve its
maintainability and flexibility. It is still an early alpha version and
neither feature complete nor bug free.

	Removed features:

	The mosl DSL (including Eclipse xtext and Java) are now gone. Mosaik now
only uses Python.

	Mosaik now longer has executables but is now used as a library.

	The platform manager is gone.

	Mosaik no longer includes a database.

	Mosaik no longer includes a web UI.

	Mosaik now consists of four core components with the following feature sets:

	mosaik API

	The API has bean cleaned up and simplified.

	Simulators and control strategies share the same API.

	There are only four calls from mosaik to a simulator: init, create,
step and get_data.

	Simulators / processes can make asynchronous requests to mosaik during a
step: get_progress, get_related_entities, get_data.

	ZeroMQ with JSON is replaced by plain network sockets with JSON.

	Scenarios:

	Pure Python is now used to describe scenarios. This offers you more
flexibility to create complex scenarios.

	Scenario creation simplified: Start a simulator to get a model factory.
Use the factory to create model instances (entities). Connect entities.
Run simulation.

	Connection rules are are no based on a primitive connect function that
only connects two entities with each other. On top of that, any
connection strategy can be implemented.

	Simulation Manager:

	Simulators written in Python 3 can be executed in process.

	Simulators can be started as external processes.

	Mosaik can connect to an already running instance of a simulator. This
can be used as a replacement for the now gone platform manager.

	Simulation execution:

	The simulation is now event-based. No schedule and no synchronization
points need to be computed.

	Simulators can have different and varying step sizes.

	Mosaik ecosystem:

	A high-level implementation of the mosaik 2 API currently only exists for
Python. See https://gitlab.com/mosaik/mosaik-api-python.

	mosaik-web is a simple visualization for mosaik simulations. See
https://gitlab.com/mosaik/mosaik-web.

	mosaik-pypower is an adapter for the PYPOWER load flow analysis
library. See https://gitlab.com/mosaik/mosaik-pypower and
https://github.com/rwl/PYPOWER.

	mosaik-csv and mosaik-householdsim are simple demo simulators that you
can use to “simulate” CSV data sets and load-profile based households. See
https://gitlab.com/mosaik/mosaik-csv and
https://gitlab.com/mosaik/mosaik-householdsim.

	There is a repository containing a simple demo scenario for mosaik. See
https://gitlab.com/mosaik/mosaik-demo.

1.1 – 2013-10-25

	[NEW] New API for control strategies.

	[NEW] Mosaik can be configured via environment variables.

	[NEW] Various changes and improvements implemented during Steffen’s
dissertation.

1.0 – 2013-01-25

Mosaik 1 was nearly a complete rewrite of the previous version and already
incorporated many of the concepts and features described in Steffen Schütte’s
Phd thesis [http://www.informatik.uni-oldenburg.de/download/Promotionen/dissertation_schuette_08012014.pdf].

It used mosl, a DSL implemented with Eclipse and xtext, to describe
simulators and scenarios. Interprocess communication was done with ZeroMQ and
JSON encoded messages.

0.5 – 2011-08-22

This was the first actual version of mosaik that actually worked. However, the
simulators we were using at that time were hard coded into the simulation loop
and we used XML-RPC to communicate with the simulators.

 Privacy Policies

Privacy Policies

We welcome you to our website. We would like to inform you about the management of your personal data in accordance with Art. 13 General Data Protection Regulation (GDPR).

Controller

The controller responsible for the described data collection and processing is OFFIS e.V., Escherweg 2, 26121 Oldenburg/Germany.

Usage Data

When you visit our website, the data collected from the use of the website is temporarily stored on our web server for statistical purposes in order to improve the quality of our website. This data set contains:

	the page, from which the data is requested

	the name of the data file,

	the date and time of the query,

	the amount of data transferred,

	the access status (file transmitted, file not found),

	a description of the type of browser used,

	the IP address of the requesting computer shortened to such an extent that no reidentification of any persona data is possible.

The listed usage data is stored anonymously. The legal basis for the processing of this personal data is provided for in Art. 6 para. 1 lit. f GDPR.

Data Transfer to Third Parties

We do not transfer your personal data to third parties.

Cookies

We use cookies on our website. Cookies are small pieces of data that are stored and read in your end-device. A distinction is made between session cookies, which are deleted when you close your browser, and permanent cookies, which are stored even after your visit has expired. Cookies may contain data that enables the recognition of the device being used. However, in some cases cookies only contain information on certain settings which are not personal data.

We use session cookies and permanent cookies on our website. The data is processed in accordance to Art. 6 para. 1 lit. f GDPR and in the interest of optimizing or enabling user guidance and improving our website presence.

Please be aware that you can set your browser to inform you when cookies are being stored or used on the website you are visiting. Thus, any use of cookies is transparent to you. You have the possibility to delete your browser configuration at any time and prevent any use of new cookies. In the event you refuse the use of cookies, please note that our web sites may not be displayed optimally and some functions are then no longer technically available.

Data Security

To avoid unauthorized access to your data, we have implemented technical and organizational measures. We use encryption technologies on our website. Your data will be transferred to our servers and back again via a connection that is protected by a TLS encryption technology. You can recognize that you are browsing on an encryption secured website by the lock-symbol shown in the address bar of your browser and by the address bar starting with https://.

Your Rights as a User

As a website user, the GDPR grants you certain rights when processing your personal data.

	Right of access (Art. 15 GDPR):
You have the right to obtain confirmation as to whether or not personal data concerning you is being processed, and, where that is the case access to the personal data and the information specified in Art. 15 GDPR.

	Right to rectification and erasure (Art. 16 and 17 GDPR):
You have the right to obtain without undue delay the rectification of inaccurate personal data concerning you and, if necessary, the right to have incomplete personal data completed.
You also have the right to obtain an erasure of the personal data concerning you without undue delay, if one of the reasons listed in Art. 17 GDPR applies, e.g. if the data is no longer necessary for the intended purpose.

	Right to restriction of processing (Art. 18 GDPR):
If one of the conditions set forth in Art. 18 GDPR applies, you shall have the right to restrict the processing of your data to mere storage, e.g. if you revoke consent, to the processing, for the duration of a possible examination.

	Right to data portability (Art. 20 GDPR):
In certain situations, listed in Art. 20 GDPR, you have the right to receive the personal data concerning you in a structured, common and machine-readable format or demand a transmission of the data to another third party.

	Right to object (Art. 21 GDPR):
If the data is processed pursuant to Art. 6 para. 1 lit. f GDPR (data processing for the purposes of the legitimate interests), you have the right to object to the processing at any time for reasons arising out of your particular situation. We will then no longer process personal data, unless there are demonstrably compelling legitimate grounds for processing, which override the interests, rights and freedoms of the person concerned, or the processing serves the purpose of asserting, exercising or defending legal claims.

	Right to lodge a complaint with a supervisory authority:
Pursuant to Art. 77 GDPR, you have the right to lodge a complaint with a supervisory authority if you consider the processing of the data concerning you infringing data protection regulations. The right to lodge a complaint may be invoked in particular in the Member State of your habitual residence, place of work or the place of the alleged infringement.

Contact Details of the Data Protection Officer

Please contact our data protection officer if you have any further questions, suggestions or wishes regarding data protection:

Dr. Uwe Schläger

datenschutz nord GmbH

Web: www.datenschutz-nord-guppe.de

E-Mail: office@datenschutz-nord.de

Telefon: +49 421 69 66 32 0

 Legals

Legals

Address

OFFIS e. V.

Escherweg 2

26121 Oldenburg

Germany

Phone +49 441 9722-0

Fax +49 441 9722-102

Email: institut [A T] offis.de

Internet: www.offis.de [http://www.offis.de]

Board Members

Prof. Dr. Sebastian Lehnhoff (Chairman)

Prof. Dr. techn. Susanne Boll-Westermann

Prof. Dr.-Ing. Andreas Hein

Register Court

Amtsgericht Oldenburg

Registernumber VR 1956

VAT Identification Number

DE 811582102

Responsible in the sense of press law

Dr. Ing. Jürgen Meister (Director)

OFFIS e.V.

Escherweg 2

26121 Oldenburg

Disclaimer

Despite careful control OFFIS assumes no liability for the content of external links. The operators of such a website are solely responsible for its content. At the time of linking the concerned sites were checked for possible violations of law. Illegal contents were not identifiable at that time. A permanent control of the linked pages is not reasonable without specific indications of a violation. Upon notification of violations, OFFIS will remove such links immediately.

 Datenschutz

Datenschutz

Datenschutzerklärung

Wir nehmen den Schutz Ihrer persönlichen Daten sehr ernst. Ihre Daten werden im Rahmen der gesetzlichen Vorschriften geschützt. Personenbezogene Daten werden auf unseren Internetseiten nur im notwendigen Umfang erhoben. In keinem Fall werden die erhobenen Daten verkauft oder aus anderen Gründen an Dritte weitergegeben.

Verantwortlicher

Verantwortlich für die hier erläuterte Datenverarbeitung ist der OFFIS e.V., Escherweg 2, 26121 Oldenburg.

Erhebung und Verarbeitung von Daten

Jeder Zugriff auf eine unserer Internetseiten und jeder Abruf einer auf den Internetseiten hinterlegten Datei werden von gängigen Webserver-Log-Dateien protokolliert. Die Speicherung dient internen systembezogenen und statistischen Zwecken. Protokolliert wird u.a.:

	welche Datei angefordert wurde,

	der Name der Datei,

	das Datum und die Uhrzeit der Anforderung,

	die übertragene Datenmenge,

	der Zugriffsstatus (Datei nicht gefunden, Datei übertragen etc.),

	der Typ des verwendeten Webbrowsers und

	die IP-Adresse des Internetseitenbesuchers

Sämtliche dieser Daten werden ausschließlich anonymisiert gespeichert und ausgewertet. Zu diesem Zweck wird die IP-Adresse des Systems, von dem aus die Internetseite oder Datei angefordert wurde, geeignet anonymisiert. Rechtsgrundlage ist Art. 6 Abs. 1 lit. f DSGVO (Datenschutz-Grundverordnung). Es ist somit weder ein Rückschluss auf eine bestimmte Person möglich, noch erfolgt eine Zusammenführung mit anderen Daten.

Cookies

Darüber hinaus verwenden wir weitere Cookies, um unsere Internetseiten besser auf Ihre Wünsche ausrichten und um statistische Daten über die Nutzung unserer Internetseiten erheben zu können. Durch diese Cookies werden keine Daten erhoben, die einen Rückschluss auf eine bestimmte Person ermöglich. Auch die Installation dieser Cookies wird durch eine entsprechende Browser-Einstellung verhindert. Einmal gesetzte Cookies können Sie jederzeit selbst löschen, indem Sie den entsprechenden Menüpunkt in Ihrem Internet-Browser aufrufen oder die Cookies auf Ihrer Festplatte löschen. Einzelheiten hierzu finden Sie im Hilfemenü Ihres Internet-Browsers.
Weitergehende personenbezogene Daten werden nur erfasst, wenn Sie diese Angaben freiwillig, z.B. im Rahmen einer Anfrage oder Registrierung, machen.

Datensicherheit

Um Ihre Daten vor unerwünschten Zugriffen möglichst umfassend zu schützen, treffen wir technische und organisatorische Maßnahmen. Wir setzen auf unseren Seiten ein Verschlüsselungsverfahren ein. Ihre Angaben werden von Ihrem Rechner zu unserem Server und umgekehrt über das Internet mittels einer TLS-Verschlüsselung übertragen. Sie erkennen dies daran, dass in der Statusleiste Ihres Browsers das Schloss-Symbol geschlossen ist und die Adresszeile mit https:// beginnt.
Bitte beachten Sie, dass außerhalb der vorgenannten Rahmenbedingungen, insbesondere bei der Kommunikation per E-Mail die vollständige Datensicherheit von uns naturgemäß nicht gewährleistet werden kann.

Verwendung der Daten
Wir beachten den Grundsatz der zweckgebundenen Datenverwendung und erheben, verarbeiten und speichern Ihre personenbezogenen Daten nur für die Zwecke, für welche Sie uns diese mitgeteilt haben und für die technische Administration. Eine Weitergabe Ihrer persönlichen Daten an Dritte erfolgt ohne Ihre ausdrückliche Einwilligung nicht, sofern dies nicht zur Erbringung der Dienstleistung oder zur Vertragsdurchführung notwendig ist. Auch die Übermittlung an auskunftsberechtigte staatliche Institution und Behörden erfolgt nur im Rahmen der gesetzlichen Auskunftspflichten oder wenn wir durch eine gerichtliche Entscheidung zur Auskunft verpflichtet werden.

Löschung der Daten

Eine Löschung der gespeicherten personenbezogenen Daten erfolgt, wenn Sie Ihre Einwilligung zur Speicherung widerrufen, wenn deren Kenntnis zur Erfüllung des mit der Speicherung verfolgten Zwecks nicht mehr erforderlich ist oder wenn deren Speicherung aus sonstigen gesetzlichen Gründen unzulässig ist.

Ihre Rechte als Nutzer

Bei Verarbeitung Ihrer personenbezogenen Daten gewährt die DSGVO Ihnen als Webseitennutzer bestimmte Rechte:

	Auskunftsrecht (Art. 15 DSGVO):
Sie haben das Recht eine Bestätigung darüber zu verlangen, ob sie betreffende personenbezogene Daten verarbeitet werden; ist dies der Fall, so haben Sie ein Recht auf Auskunft über diese personenbezogenen Daten und auf die in Art. 15 DSGVO im einzelnen aufgeführten Informationen.

	Recht auf Berichtigung und Löschung (Art. 16 und 17 DSGVO):
Sie haben das Recht, unverzüglich die Berichtigung sie betreffender unrichtiger personenbezogener Daten und ggf. die Vervollständigung unvollständiger perso-nenbezogener Daten zu verlangen.
Sie haben zudem das Recht, zu verlangen, dass sie betreffende personenbezogene Daten unverzüglich gelöscht werden, sofern einer der in Art. 17 DSGVO im einzelnen aufgeführten Gründe zutrifft, z. B. wenn die Daten für die verfolgten Zwecke nicht mehr benötigt werden.

	Recht auf Einschränkung der Verarbeitung (Art. 18 DSGVO):
Sie haben das Recht, die Einschränkung der Verarbeitung zu verlangen, wenn eine der in Art. 18 DSGVO aufgeführten Voraussetzungen gegeben ist, z. B. wenn Sie Widerspruch gegen die Verarbeitung eingelegt haben, für die Dauer einer etwai-gen Prüfung.

	Recht auf Datenübertragbarkeit (Art. 20 DSGVO):
In bestimmten Fällen, die in Art. 20 DSGVO im Einzelnen aufgeführt werden, haben Sie das Recht, die sie betreffenden personenbezogenen Daten in einem struktu-rierten, gängigen und maschinenlesbaren Format zu erhalten bzw. die Übermittlung dieser Daten an einen Dritten zu verlangen.

	Widerspruchsrecht (Art. 21 DSGVO):
Werden Daten auf Grundlage von Art. 6 Abs. 1 lit. f erhoben (Datenverarbeitung zur Wahrung berechtigter Interessen), steht Ihnen das Recht zu, aus Gründen, die sich aus Ihrer besonderen Situation ergeben, jederzeit gegen die Verarbeitung Wider-spruch einzulegen. Wir verarbeiten die personenbezogenen Daten dann nicht mehr, es sei denn, es liegen nachweisbar zwingende schutzwürdige Gründe für die Verarbeitung vor, die die Interessen, Rechte und Freiheiten der betroffenen Person überwiegen, oder die Verarbeitung dient der Geltendmachung, Ausübung oder Verteidigung von Rechtsansprüchen.

	Beschwerderecht bei einer Aufsichtsbehörde
Sie haben gem. Art. 77 DSGVO das Recht auf Beschwerde bei einer Aufsichtsbehör-de, wenn Sie der Ansicht sind, dass die Verarbeitung der Sie betreffenden Daten gegen datenschutzrechtliche Bestimmungen verstößt. Das Beschwerderecht kann insbesondere bei einer Aufsichtsbehörde in dem Mitgliedstaat Ihres Aufenthaltsorts, Ihres Arbeitsplatzes oder des Orts des mutmaßlichen Verstoßes geltend gemacht werden.

Datenschutzbeauftragter

Dr. Uwe Schläger

datenschutz nord GmbH

www.datenschutz-nord.de

office(at)datenschutz-nord.de

 Impressum

Impressum

Anschrift

OFFIS e. V.

Escherweg 2

26121 Oldenburg

Telefon +49 441 9722-0

Fax +49 441 9722-102

E-Mail: institut [A T] offis.de

Internet: www.offis.de [http://www.offis.de/]

Vertretungsberechtigter Vorstand

Prof. Dr. Sebastian Lehnhoff (Vorsitzender)

Prof. Dr. techn. Susanne Boll-Westermann

Prof. Dr.-Ing. Andreas Hein

Registergericht

Amtsgericht Oldenburg

Registernummer VR 1956

Umsatzsteuer-Identifikationsnummer (USt-IdNr.)

DE 811582102

Verantwortlich im Sinne der Presse

Dr. Ing. Jürgen Meister (Bereichsleiter)

OFFIS e.V.

Escherweg 2

26121 Oldenburg

Datenschutz

Mehr zum Thema Datenschutz finden Sie hier.

 Glossary

Glossary

	Control strategy
	A program that is intended to observe and manipulate the state of
objects (simulated or real) of a power system or those that are somehow
connected to the power system; for example a multi-agent system that
controls the feed-in of decentralized producers.

	Co-simulation
	In co-simulation the different subsystems which form a coupled problem
are modeled and simulated in a distributed manner. The modeling is done
on the subsystem level without having the coupled problem in mind. The
coupled simulation is carried out by running the subsystems in a
black-box manner. During the simulation the subsystems will exchange
data. (source: Wikipedia [http://en.wikipedia.org/wiki/Co-simulation])

	Data-flow
	The exchange of data between two simulators or
between the entities of two simulators.

Example: the (re)active power feed-in of a PV model that is sent to
a node of a power system simulator.

	Entity
	Represents an instance of a Model within a mosaik
simulation. Entities can be connected to establish a data-flow
between them. Examples are the nodes and lines of a power grid or single
electric vehicles.

	Entity Set
	A set or list of entities.

	Framework
	A software framework provides generic functionality that can be
selectively changed and expanded by additional user-written code.

	Model
	A Model is a simplified representation of a real world object or system.
It reproduces the relevant aspects of that object or system for its
systematic analysis.

	Scenario
	Description of the system to be simulated. It includes the used
models and their relations. It includes the state
of the models and their data base. In the mosaik-context it includes also
the simulators.

	Simulation
	The process of executing a scenario (and the simulation models).

	Simulation Model
	The representation of a model in programming code..

	Simulator
	A program that contains the implementation of one or more
simulation models and is able to execute these
models (that is, to perform a simulation).

Sometimes, the term simulator also refers all kinds of processes that
can talk to mosaik, including actual simulators, control strategies,
visualization servers, database adapters and so on.

	Smart Grid
	An electric power system that utilizes information exchange and control
technologies, distributed computing and associated sensors and actuators,
for purposes such as:

	to integrate the behaviour and actions of the network users and other stakeholders,

	to efficiently deliver sustainable, economic and secure electricity supplies.

(source: IEC [http://www.electropedia.org])

	Step
	Mosaik executes simulators in discrete time steps. The step size of a
time-based simulator can be an arbitrary integer. It can also vary
during the simulation. Event-based simulators are stepped whenever its
inputs are updated (by other simulators). They can also schedule steps
for themselves.

Mosaik uses integers for the representation of time (to avoid rounding
errors etc.). It’s unit (i.e. to how many seconds one integer step
corresponds) can be defined in the scenario, and is passed to every
simulation component via the init function as key-word
parameter time_resolution. It’s a floating point number and defaults to *1..

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mosaik	

 	
 	
 mosaik.exceptions	

 	
 	
 mosaik.scenario	

 	
 	
 mosaik.scheduler	

 	
 	
 mosaik.simmanager	

 	
 	
 mosaik.util	

 	
 	
 mosaik_api_v3	

 	[image: -]
 	
 mosaik_components	

 	
 	
 mosaik_components.heatpump.controller.controller	

 	
 	
 mosaik_components.heatpump.Heat_Pump_Design	

 	
 	
 mosaik_components.heatpump.Heat_Pump_Model	

 	
 	
 mosaik_components.heatpump.hotwatertank.hotwatertank	

 Index

Index

 _
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	
 	_design_hp() (mosaik_components.heatpump.Heat_Pump_Design.Heat_Pump_Design method)

 	
 	_etas_heatload_id() (mosaik_components.heatpump.Heat_Pump_Design.Heat_Pump_Design method)

 	_take_closest() (mosaik_components.heatpump.Heat_Pump_Design.Heat_Pump_Design method)

C

 	
 	cache_triggering_ancestors() (mosaik.scenario.World method)

 	calc_dhw_supply() (mosaik_components.heatpump.controller.controller.Controller method)

 	calc_sh_supply() (mosaik_components.heatpump.controller.controller.Controller method)

 	children (mosaik.scenario.Entity attribute)

 	CmdModel (typeddict in mosaik.scenario)

 	Co-simulation

 	cond_in_T (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_Inputs attribute)

 	(mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	cond_m (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	cond_m_neg (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	config (mosaik.scenario.World attribute)

 	
 	configure() (mosaik_api_v3.Simulator method)

 	connect() (mosaik.scenario.World method)

 	connect_many_to_one() (in module mosaik.util)

 	connect_randomly() (in module mosaik.util)

 	Connection (class in mosaik_components.heatpump.hotwatertank.hotwatertank)

 	ConnectModel (typeddict in mosaik.scenario)

 	cons_T (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	Control strategy

 	Controller (class in mosaik_components.heatpump.controller.controller)

 	COP (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	create() (mosaik.scenario.ModelMock method)

 	(mosaik_api_v3.Simulator method)

D

 	
 	data (mosaik.simmanager.SimRunner attribute)

 	
 	Data-flow

 	design (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump attribute)

E

 	
 	eid (mosaik.scenario.Entity attribute)

 	ensure_no_dataflow_cycles() (mosaik.scenario.World method)

 	Entity

 	(class in mosaik.scenario)

 	
 	Entity Set

 	entity_graph (mosaik.scenario.World attribute)

F

 	
 	finalize() (mosaik_api_v3.Simulator method)

 	
 	Framework

 	full_id (mosaik.scenario.Entity property)

G

 	
 	get_avg_progress() (in module mosaik.scheduler)

 	get_data() (mosaik.scenario.World method)

 	(mosaik.simmanager.MosaikRemote method)

 	(mosaik_api_v3.Simulator method)

 	get_dict() (mosaik.basic_simulators.OutputSimulator method)

 	
 	get_input_data() (in module mosaik.scheduler)

 	get_max_advance() (in module mosaik.scheduler)

 	get_outputs() (in module mosaik.scheduler)

 	get_progress() (in module mosaik.scheduler)

 	(mosaik.simmanager.MosaikRemote method)

 	get_related_entities() (mosaik.simmanager.MosaikRemote method)

H

 	
 	Heat_Pump (class in mosaik_components.heatpump.Heat_Pump_Model)

 	Heat_Pump_Design (class in mosaik_components.heatpump.Heat_Pump_Design)

 	Heat_Pump_Inputs (class in mosaik_components.heatpump.Heat_Pump_Model)

 	Heat_Pump_State (class in mosaik_components.heatpump.Heat_Pump_Model)

 	
 	heat_source_T (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_Inputs attribute)

 	(mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	HeatingRod (class in mosaik_components.heatpump.hotwatertank.hotwatertank)

 	HotWaterTank (class in mosaik_components.heatpump.hotwatertank.hotwatertank)

I

 	
 	init() (mosaik_api_v3.Simulator method)

 	input_delays (mosaik.simmanager.SimRunner attribute)

 	
 	inputs (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump attribute)

 	inputs_from_set_data (mosaik.simmanager.SimRunner attribute)

 	InputSimulator (class in mosaik.basic_simulators)

L

 	
 	last_step (mosaik.simmanager.SimRunner attribute)

 	
 	Layer (class in mosaik_components.heatpump.hotwatertank.hotwatertank)

M

 	
 	MassFlow (class in mosaik_components.heatpump.hotwatertank.hotwatertank)

 	max_loop_iterations (mosaik.scenario.World attribute)

 	meta (mosaik_api_v3.Simulator attribute)

 	Model

 	model_mock (mosaik.scenario.Entity attribute)

 	ModelFactory (class in mosaik.scenario)

 	ModelMock (class in mosaik.scenario)

 	
 module

 	mosaik

 	mosaik.exceptions

 	mosaik.scenario

 	mosaik.scheduler

 	mosaik.simmanager

 	mosaik.util

 	mosaik_api_v3

 	mosaik_components.heatpump.controller.controller

 	mosaik_components.heatpump.Heat_Pump_Design

 	mosaik_components.heatpump.Heat_Pump_Model

 	mosaik_components.heatpump.hotwatertank.hotwatertank

 	
 mosaik

 	module

 	mosaik (mosaik_api_v3.Simulator attribute)

 	
 	
 mosaik.exceptions

 	module

 	
 mosaik.scenario

 	module

 	
 mosaik.scheduler

 	module

 	
 mosaik.simmanager

 	module

 	
 mosaik.util

 	module

 	
 mosaik_api_v3

 	module

 	
 mosaik_components.heatpump.controller.controller

 	module

 	
 mosaik_components.heatpump.Heat_Pump_Design

 	module

 	
 mosaik_components.heatpump.Heat_Pump_Model

 	module

 	
 mosaik_components.heatpump.hotwatertank.hotwatertank

 	module

 	MosaikConfigTotal (typeddict in mosaik.simmanager)

 	MosaikRemote (class in mosaik.simmanager)

N

 	
 	next_self_step (mosaik.simmanager.SimRunner attribute)

 	
 	next_steps (mosaik.simmanager.SimRunner attribute)

 	notify_dependencies() (in module mosaik.scheduler)

O

 	
 	output_time (mosaik.simmanager.SimRunner attribute)

 	
 	output_to_push (mosaik.simmanager.SimRunner attribute)

 	OutputSimulator (class in mosaik.basic_simulators)

P

 	
 	p_cop_calc() (mosaik_components.heatpump.Heat_Pump_Design.Heat_Pump_Design method)

 	P_Required (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	persistent_inputs (mosaik.simmanager.SimRunner attribute)

 	plot_dataflow_graph() (in module mosaik.util)

 	plot_execution_graph() (in module mosaik.util)

 	plot_execution_time() (in module mosaik.util)

 	
 	plot_execution_time_per_simulator() (in module mosaik.util)

 	Port (in module mosaik.simmanager)

 	progress (mosaik.simmanager.SimRunner attribute)

 	prune_dataflow_cache() (in module mosaik.scheduler)

 	pulled_inputs (mosaik.simmanager.SimRunner attribute)

 	PythonModel (typeddict in mosaik.scenario)

Q

 	
 	Q_Demand (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_Inputs attribute)

 	(mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	
 	Q_evap (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	Q_Supplied (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

R

 	
 	rt_check() (in module mosaik.scheduler)

 	rt_factor (mosaik.scenario.World attribute)

 	rt_sleep() (in module mosaik.scheduler)

 	
 	rt_start (mosaik.simmanager.SimRunner attribute)

 	run() (in module mosaik.scheduler)

 	(mosaik.scenario.World method)

S

 	
 	Scenario

 	ScenarioError (class in mosaik.exceptions)

 	schedule_step() (mosaik.simmanager.SimRunner method)

 	Sensor (class in mosaik_components.heatpump.hotwatertank.hotwatertank)

 	set_data() (mosaik.simmanager.MosaikRemote method)

 	set_event() (mosaik.simmanager.MosaikRemote method)

 	set_initial_event() (mosaik.scenario.World method)

 	setup_done() (mosaik_api_v3.Simulator method)

 	shutdown() (mosaik.scenario.World method)

 	sid (mosaik.scenario.Entity attribute)

 	(mosaik.simmanager.SimRunner attribute)

 	sim_config (mosaik.scenario.World attribute)

 	sim_name (mosaik.scenario.Entity attribute)

 	sim_process() (in module mosaik.scheduler)

 	sim_progress (mosaik.scenario.World attribute)

 	SimConfig (in module mosaik.scenario)

 	SimRunner (class in mosaik.simmanager)

 	sims (mosaik.scenario.World attribute)

 	Simulation

 	Simulation Model

 	SimulationError (class in mosaik.exceptions)

 	Simulator

 	(class in mosaik_api_v3)

 	
 	Smart Grid

 	snapshot (mosaik_components.heatpump.hotwatertank.hotwatertank.HotWaterTank property)

 	snapshot_connections (mosaik_components.heatpump.hotwatertank.hotwatertank.HotWaterTank property)

 	start() (in module mosaik.simmanager)

 	(mosaik.scenario.World method)

 	start_connect() (in module mosaik.simmanager)

 	start_inproc() (in module mosaik.simmanager)

 	start_proc() (in module mosaik.simmanager)

 	start_simulation() (in module mosaik_api_v3)

 	StarterCollection (class in mosaik.simmanager)

 	state (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump attribute)

 	Step

 	step() (in module mosaik.scheduler)

 	(mosaik_api_v3.Simulator method)

 	(mosaik_components.heatpump.controller.controller.Controller method)

 	(mosaik_components.heatpump.Heat_Pump_Design.Heat_Pump_Design method)

 	(mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump method)

 	(mosaik_components.heatpump.hotwatertank.hotwatertank.HotWaterTank method)

 	step_error() (mosaik_components.heatpump.Heat_Pump_Design.Heat_Pump_Design method)

 	step_executed (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	step_size (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_Inputs attribute)

 	stop() (mosaik.simmanager.SimRunner method)

T

 	
 	T_amb (mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_Inputs attribute)

 	(mosaik_components.heatpump.Heat_Pump_Model.Heat_Pump_State attribute)

 	T_mean (mosaik_components.heatpump.hotwatertank.hotwatertank.HotWaterTank property)

 	task (mosaik.simmanager.SimRunner attribute)

 	time_resolution (mosaik.scenario.World attribute)

 	
 	timed_input_buffer (mosaik.simmanager.SimRunner attribute)

 	TimedInputBuffer (class in mosaik.simmanager)

 	tqdm (mosaik.scenario.World attribute)

 	triggering_ancestors (mosaik.simmanager.SimRunner attribute)

 	triggers (mosaik.simmanager.SimRunner attribute)

U

 	
 	until (mosaik.scenario.World attribute)

W

 	
 	wait_for_dependencies() (in module mosaik.scheduler)

 	
 	World (class in mosaik.scenario)

 Design and Achitecture

Design and Achitecture

Contents:

	Component Architecture
	mosaik - simpy - simpy.io

	UML Component Diagrams
	mosaik

	UML Class Diagrams
	mosaik

	simpy + simpy.io

	mosaik + simpy + simpy.io

	UML Activity Diagrams
	__init__.py

	_debug.py

	_version.py

	exceptions.py

	scenario.py

	scheduler.py

	simmanager.py

	util.py

	UML Package Diagrams
	mosaik

	simpy + simpy.io

	mosaik + simpy + simpy.io

	Method Call Diagrams
	Complete overview

	__init__.py

	_debug.py

	_version.py

	exceptions.py

	scenario.py

	scheduler.py

	simmanager.py

	util.py

 Method Call Diagrams

Method Call Diagrams

These diagrams only represent method or function calls.
They are sorted in classes or, if not object-oriented, in function groups (including sub-functions).
They provide a quick overview of where (line numbers) certain methods are called.
In the complete overview, the cross-file calls are also visible.

Complete overview

[image: No methods!]
(click to enlarge)

__init__.py

(No methods to call!)

_debug.py

[image: _debug.dot.py]
(click to enlarge)

_version.py

(No methods to call!)

exceptions.py

[image: exceptions.py]
(click to enlarge)

scenario.py

[image: scenario.py]
(click to enlarge)

scheduler.py

[image: scheduler.py]
(click to enlarge)

simmanager.py

[image: simmanager]
(click to enlarge)

util.py

[image: util.py]
(click to enlarge)

 Release Process

Release Process

This process describes the steps to execute in order to release a new version
of mosaik.

Preparations

	Make a new release of mosaik-api-python [https://gitlab.com/mosaik/mosaik-api-python] if required. Use this
guide as an orientation.

	Close all tickets for the next version [https://gitlab.com/mosaik/mosaik/-/issues].

	Check all dependencies for new versions and update the exact version of
all entries in requirements.txt. Update the minium required
versions of dependencies in setup.py if (and only if) necessary.

	Run tox from the project root. All tests for all supported
versions must pass:

$ tox
[...]
________ summary ________
py36: commands succeeded
py37: commands succeeded
congratulations :)

	Build the docs (HTML is enough). Make sure there are no errors and undefined
references.

$ cd docs/
$ make clean html
$ cd ..

	Check if all authors are listed in AUTHORS.txt.

	Update the change logs (CHANGES.txt and
docs/about/history.rst). Only keep changes for the current major
release in CHANGES.txt and reference the history page from there.

	Commit all changes:

$ git commit -m 'Updated change log for the upcoming release.'

	Update the version number in mosaik/_version.py, setup.py
and docs/conf.py and commit:

$ git commit -m 'Bump version from x.y.z to a.b.c'

Warning

Do not yet tag and push the changes so that you can safely do a rollback
if one of the next step fails and you need change something!

	Write a draft for the announcement mail with a list of changes,
acknowledgements and installation instructions. Everyone in the team should
agree with it.

Build and release

	Test the release process. Build a source distribution and a wheel [https://pypi.python.org/pypi/wheel] package and test them:

$ python setup.py sdist bdist_wheel
$ ls dist/
mosaik-a.b.c-py2.py3-none-any.whl mosaik-a.b.c.tar.gz

Try installing them:

$ rm -rf /tmp/mosaik-sdist # ensure clean state if ran repeatedly
$ virtualenv -p /usr/bin/python3 /tmp/mosaik-sdist
$ /tmp/mosaik-sdist/bin/pip install dist/mosaik-a.b.c.tar.gz
$ /tmp/mosaik-sdist/bin/python
>>> import mosaik # doctest: +SKIP
>>> mosaik.__version__ # doctest: +SKIP
'a.b.c'

and

$ rm -rf /tmp/mosaik-wheel # ensure clean state if ran repeatedly
$ virtualenv -p /usr/bin/python3 /tmp/mosaik-wheel
$ /tmp/mosaik-wheel/bin/pip install dist/mosaik-a.b.c-py2.py3-none-any.whl
$ /tmp/mosaik-wheel/bin/python
>>> import mosaik # doctest: +SKIP
>>> mosaik.__version__ # doctest: +SKIP
'a.b.c'

	Create or check your accounts for the test server [https://testpypi.python.org/pypi] and PyPI [https://pypi.python.org/pypi]. Update your ~/.pypirc with your
current credentials:

[distutils]
index-servers =
 pypi
 test

[test]
repository: https://test.pypi.org/legacy/
username: <your test user name goes here>
password: <your test password goes here>

[pypi]
repository: https://upload.pypi.org/legacy/
username: <your production user name goes here>
password: <your production password goes here>

	Upload the distributions for the new version to the test server and test the
installation again:

$ twine upload -r test dist/mosaik*a.b.c*
$ pip install -i https://testpypi.python.org/pypi mosaik

	Check if the package is displayed correctly:
https://testpypi.python.org/pypi/mosaik

	Finally upload the package to PyPI and test its installation one last time:

$ twine upload -r pypi dist/mosaik*a.b.c*
$ pip install -U mosaik

	Check if the package is displayed correctly:
https://pypi.python.org/pypi/mosaik

Post release

	Push your changes:

$ git tag a.b.c
$ git push ssh://git@gitlab.com/mosaik/mosaik.git

	Remove the build/ directory:

$ rm -r build/

	Activate the documentation build [https://readthedocs.org/dashboard/mosaik] for the new version.

	Make sure, the demo [https://gitlab.com/mosaik/mosaik-demo] works with
the new release.

	Send the prepared email to the mailing list.

	Create blog post for mosaik.offis.de.

 Requirements

Requirements

This documents lists all requirements for mosaik’s development. The main goals
are:

	Couple existing simulators, schedule their (step-wise)
execution and manage the data exchange between them.

These simulators may range from open-source software to closed-source and
commercial software as well as from simulators that can directly integrate
the mosaik API to simulators that offer their own API and that cannot be
started or directly controlled by mosaik.

	Allow easy creation and execution of large-scale simulation scenarios.

Large-scale means scenarios comprising thousands or ten thousands of
simulated entities. As few lines of code as possible should
be required to describe a scenario and connect all entities involved.

Once a scenario is defined, it should be easy to run the simulation.

	Maintainability is most important.

Developers will not be able to contribute to mosaik forever. New developers
must be able to quickly understand how mosaik works in order to fix things
and add features.

Thus, the source code of mosaik must be as readable as possible. Everything
should be documented (API docs and guides describing the ideas and
concepts behind the different parts of mosaik). There should also be as
little different technologies (and libraries to a certain point) involved as
possible.

	Runtime performance is important, too, but not as much as maintainability.

	Stability and robustness: Large simulations (comprising thousands of
entities over a period of several months or a year of simulation time) may
take a while. Mosaik should not crash in the middle of a simulation, so
everything needs to be tested as good as possible.

The following sections describe these requirements in more detail.

Types of simulators and models

	Heterogeneous implementations: It must be possible to integrate simulators
with different implementations (i.e., programming languages, frameworks,
tools).

	Different temporal resolutions: Mosaik must be able to compose simulations
from models with differing temporal resolutions.

	Multiple paradigms: Mosaik must be able to compose simulation models that
use different paradigms with respect to the handling of time (e.g., discrete
event or continuous).

	Simulators written in Python (like mosaik) should be able to run in the same
process as mosaik, so that no networking is required in order to communicate
with them.

	Mosaik must be able to start and stop (open-source) simulators that can
directly implement the mosaik API. It should always use the fasted possible
method to communicate with them; e.g., inter-process communication if the
simulator runs on the same machine or sockets if it runs on another machine.

	COTS integration: It must be possible to write adapters that translate
between the mosaik API and the API provided by commercial or closed-source
simulators.

Mosaik also needs to handle simulators that it cannot start itself but can
only connect to a running instance of them.

	Real-time simulators: Mosaik must be able to work with real-time
(wall-clock) simulators; e.g., real-time power grid simulators.

Integrating simulators

	Simulator self-description: Mosaik must provide a way for simulators do
describe their capabilities, models, inputs, outputs, and so on. This
self-description will later be used for creating scenarios.

	Mosaik API: There must be an (easy and well documented) API that simulators
can implement in order to communicate with mosaik.

	Control strategies (like multi-agent systems)
should use the same API as simulators.

Scenario definition

	Defining scenarios should happen directly in Python to not introduce another
technology that has to be maintained and because Python syntax is as easy as
an arbitrary DSL. Furthermore, Python is much more flexible and powerful
than a simple DSL.

	Connecting entities: On the lowest level, mosaik must be
able to connect two single entities. On a higher level, mosaik must be able
to automatically connect two sets of entities based on their inputs and
outputs. For example, PV modules with a P and Q output can be connected
to power grid nodes with a P and Q input.

	Filtering of entity sets: Mosaik must also offer means to automatically
filter sets of entities based on their attributes or on existing connections
to other entities.

	Cyclic Data-flow Support: mosaik must offer a way to deal with cyclic data
flows, e.g. between a controllable energy producer and a control strategy
which generates schedules based on the current feed-in.

	Physical Topology Access: mosaik must allow the control strategies and simulators to query/traverse the
physical topology created during the composition process.

	Intra-Model Topology Access: a simulator must offer the possibility
to get access to the relations between the entities of
a model (e.g., how nodes and lines in a power grid are
interconnected) for building the complete physical topology.

	Moving entities: Mosaik must support the specification of scenarios with
moving resources like electric vehicles which may be connected to varying
nodes in the power grid based on their current state.

	Scenario variants: Mosaik must offer means to easily create scenario
variants to e.g., simulate a scenario for summer and winter months.

Execution

	Mosaik must be able to report the progress of a simulation.

	Data logging: mosaik must log data that is provided by the simulators
for later evaluation. It must also be possible to filter what goes into
the database when creating a scenario. Otherwise, the database might grow
too large and contain mostly irrelevant data for the research question at
hand.

	It should be possible to distribute the simulator instances over multiple
processes on the same machine and over multiple different machines or
servers.

	Mosaik should be usable as a library. That means, that the user who creates
a scenario makes calls to mosaik’s functionality to execute their scenario.
This will allow them to easily test the scenario and hook into mosaik e.g.,
for debugging purposes.

	Mosaik should be able to run as a framework. That means that a mosaik
process loads a scenario and executes a defined entry point (the scenario’s
main method). This allows to start a mosaik master process that manages
the execution of multiple scenarios in parallel and that offers a weg GUI
to monitor these simulations.

	Configure log messages for every component independently: Simulation
developers, scenario experts and mosaik core developers usually are
interested in different kinds of debug output. It should thus be possible to
change log levels for mosaik’s various components independently.

 Development setup and tests

Development setup and tests

This guide will show you how to set up a development environment for mosaik
or components of its ecosystem (like the Python API [https://gitlab.com/mosaik/mosaik-api-python]), how to run the tests,
check the code coverage and quality, and build the documentation.

General advice

	You should use Linux or OS X as your main development platform – most tools
are working much better there than on Windows. However, you should still make
sure that mosaik keeps working on Windows. ;-)

	You should create a separate virtualenv for each project, that you are going
to work on (e.g., one for mosaik, another one for mosaik-api-python
and so forth). This will make it easier for you to track their dependencies.

	You should install and use virtualenvwrapper [http://virtualenvwrapper.readthedocs.org/en/latest/]. It will make working
with multiple virtualenvs much easier.

	You may need to change some absolute paths from the code blocks depending on
you system.

	I’ll only explain the necessary steps for mosaik, because its the most
complex project (e.g., mosaik-api-python has no separate documentation).

	You should have worked through the general installation instructions and got the demo running. Afterwards delete the virtualenv
mosaik (rmvirtualenv mosaik) – you can later recreate it as
moaik-demo.

Installation

Change to the directory where you keep your code and clone the
mosaik-repository. Create a virtualenv with a Python 3 interpreter and install
all development dependencies. Finally, install mosaik in editable mode [https://pip.pypa.io/en/latest/reference/pip_install.html?highlight=editable#editable-installs]:

$ cd ~/Code
$ git clone https://gitlab.com/mosaik/mosaik.git
$ cd mosaik
$ mkvirtualenv -p /usr/bin/python3 mosaik
(mosaik)$ pip install -r requirements.txt
(mosaik)$ pip install -e . # Install mosaik in "editable"

An “editable” installation just means, that changes you introduce in the
repository are automatically reflected in you installation (and thus in your
tests).

Tests and coverage

To run all tests, simply execute py.test:

$ py.test

It will automatically run all code examples in the docs/ as well as the
actual tests from tests/. Pytest’s behavior can be controlled via
the [pytest] section in the setup.cfg file and via command line arguments
(see its documentation [http://pytest.org/latest/] or py.test
--help).

You should also regularly check the code/branch coverage:

$ py.test --cov=mosaik

You can also generate HTML files from your source that highlight uncovered
lines:

$ py.test --cov=mosaik --cov-report=html
$ [kde-]open htmlcov/index.html

Take a look at the docs of pytest-cov [https://github.com/schlamar/pytest-cov] for more help.

Before making a release (and in between) you should make sure that the tests
are passing on all supported Python versions. You do this with tox [http://tox.readthedocs.org/en/latest/]. Tox’ config file tox.ini
will show you which versions we support. Every interpreter listed here (e.g.,
Python 3.6 or PyPy) should be installed on your system. Running tox is than
very easy:

$ tox
...
_______ summary ________
py36: commands succeeded
py37: commands succeeded
congratulations :)

Coding style

Mosaik follows – as most Python projects – relatively strict coding
standards.

	All source files are encoded with UTF-8

	LF (\n) is used to represent a new line (Unix style).

	Four spaces are used for indentation (three spaces for reStructuredText
directives).

	Trailing whitespaces should always be stripped.

	Lines should be no longer than 79 characters.

	Python files should be formatted according to PEP
8 [http://legacy.python.org/dev/peps/pep-0008/] and PEP 257 [http://legacy.python.org/dev/peps/pep-0257/].

You should regularly run flake8 [https://flake8.readthedocs.org/en/latest/]
to perform PEP8 style checks and and run some analyses to find things like
unused imports:

$ flake8 mosaik

It takes its configuration from setup.cfg.

Build the documentation

We use Sphinx [http://sphinx-doc.org/] to create mosaik’s documentation:

$ cd docs/
$ make html

This will build the documentation to docs/_build/html.

When you push new revisions to the develop branch of mosaik’s main repo
(gitlab.com/mosaik/mosaik) the official documentation [https://mosaik.readthedocs.org] is automatically updated via a hook.

 Component Architecture

Component Architecture

This is outdated. We are not using simpy anymore.

mosaik - simpy - simpy.io

[image: ov-mosaik]
(click to enlarge)

 UML Component Diagrams

UML Component Diagrams

mosaik

[image: mosaik-component]
(click to enlarge)

 UML Class Diagrams

UML Class Diagrams

These diagrams represent the object-oriented structure of mosaik.
However, mosaik is not completely object-oriented, so not all methods and global variables are listed.
The same applies to simpy and simpy.io which provide basic functionality for mosaik.

mosaik

[image: classes_mosaik]
(click to enlarge)

simpy + simpy.io

[image: classes_mosaik_simpy]
(click to enlarge)

mosaik + simpy + simpy.io

[image: classes_mosaik_simpy]
(click to enlarge)

 UML Activity Diagrams

UML Activity Diagrams

The activity diagrams reflect the program flow within the individual methods,
regardless of simple or object-oriented declaration.
The methods are displayed file-wise and not nested.
To follow an integrated method call (possibly across files),
it is recommended to enlarge the correct image and use the search function of the respective browser.
You can find the symbol key of the diagrams here.

__init__.py

[image: __init__.py]
(click to enlarge)

_debug.py

[image: _debug.dot.py]
(click to enlarge)

_version.py

[image: _version.py]
(click to enlarge)

exceptions.py

[image: exceptions.py]
(click to enlarge)

scenario.py

[image: scenario.py]
(click to enlarge)

scheduler.py

[image: scheduler.py]
(click to enlarge)

simmanager.py

[image: simmanager]
(click to enlarge)

util.py

[image: util.py]
(click to enlarge)

 UML Package Diagrams

UML Package Diagrams

This diagrams describe the import relation between the modules (files) with directed arrows!

mosaik

[image: package_mosaik]
(click to enlarge)

simpy + simpy.io

[image: package_mosaik]
(click to enlarge)

mosaik + simpy + simpy.io

[image: package_mosaik]
(click to enlarge)

 <no title>

 [image: mosaik] basic simulators

In order to test custom-made simulators, two basic simulators are provided to use and connect to.

	The InputSimulator is a simulator that can
be used to feed either a constant value or the value of a function into a
designated simulator ready to handle the data.

	The OutputSimulator writes
data from a custom simulator into a python dictionary.
Users can access this dictionary by calling
get_dict on a
created output simulator entity.

Below is an example code snippet that connects the input simulator with the output simulator and executes ten time steps.
After the simulation is done, the dictionary including the values received by the input simulator is printed.

The output simulator is initialized.
output_dict = world.start("OutputSim")

Two entities of the output simulator model are created.
output_model = output_dict.Dict.create(2)

The input simulator is initialized.
input = world.start("InputSim", step_size=1)

One function input simulator entity is created.
input_model_func = input.Function.create(1, function=sample_function)

One constant input simulator entity is created.
input_model_const = input.Constant.create(1, constant=2)

The input entities are connected to separate output entities
world.connect(input_model_func[0], output_model[1], "value")
world.connect(input_model_const[0], output_model[0], "value")

Run simulation.
world.run(until=END)

Dictionary content is printed.
pprint(output_dict.get_dict(output_model[0].eid))
pprint(output_dict.get_dict(output_model[1].eid))

_static/pyan/_version_nodef.py.dot.png

_static/mosaik_ecosystem_logo.png
mosaik
@ ecosystem

_static/pyan/exceptions.py.dot.png
exceptions

ScenarioError
(exceptions.py:7)

SimulationError
(exceptions.py:14)

exceptions.SimulationError

(exceptions.py:19)

_static/mosaik_logo.png
mosaik
Q)

¥

_static/pyan/exceptions_nodef.py.dot.png
exceptions

exceptions.SimulationError

ScenarioError
(exceptions.py:7)

SimulationError
(exceptions.py:14)

(exceptions.py:19)

_static/mosaik_logo_core_development.png
world.until

if rt_factg

_static/pyan/mosaik.py.dot.png
P simmanager

(simmanager.py:37)

start_connect
(simmanager.py:184)

start_proc
(simmanager.py: 144)

validate_api_version
(simmanager. py:274)

make_proxy
(simmanager. py:208)

- util 22 =7 scenario
start_inproc terminate sync_call connect_randomly connect_many_to_one e e e
(simmanager.py:105) (simmanager.py:261) (util.py:47) (util.py:82) (util.py:71) . == (scenario.py:32) S EEE EET
- utilsynf:_call — Lc S__ scenario.World N R S
LocalProcess RemoteProcess. D proc. sync_process _connect_evenly _connect_randomly fi i run connect get_data start <
- (simmanager.py:370) (simmanager. py:404) (util.py:58) (util.py:13) (util.py:128) (util.py: 144) ' (scenario.py:217) (scenario.py:117) (scenario.py: 166) (scenario.py: 104) i
- S .) -5
- = ~ S |
- < = S N >~ I) ‘
L scheduler Sel L simmanager. RemoteProcess Se. N SSaa scenario. Worlld.get_data |
‘ N S = N - i
enable disable | run SimProxy _get_proxy st _init__ _get_proxy stop _init__ shutdown _check_attributes ModelFactory ‘
(_debug.py:16) (_debug.py:30) l e mmmmmmmmmmmmm——m—mmmo-m—mooe (scheduler.py:11) (simmanager. py:298) (simmanager.py:393) (simmanager.py:388) (simmanager.py:372) (simmanager.py:434) (simmanager.py:414) (simmanager.py:406) (scenario.py:266) (scenario.py:285) b
p -——- === i
s emomo==ERE
- STTO N | e R, N R Y ,,EEEYYe/YerYem/mmm e,] e 0 m m—m—m—m— 0 0 00— 77T7T]e—sms e e mesmsme— m—m eI 7 S |
_debug ¢nable L, e S scenarjo.ModelFactory T ; exception: !
, v [(R ——— - 7 ==
wrapped_step N\ | 70T L N sim_process _init__ MosaikRemote -—--- SEOSEEER SR _init__ __getattr__ SimulationError ScenarioError
(_debug.py:21) (scheduler.py:44) (simmanager.py:305) SEEE S (simmanager.py:439) - o (scenario.py:296) (scenario.py:320) (exceptions.py: 14) (exceptions.py:7)
BN - — — - —
S PR simmanager.MosaikRemote \ scenario.ModelFactory.__init__ N === exceptions.SimulationError
pre_step wait_for_dependencies get_input_data leep get_keep_running_func ep _check_model_and_meth_names __init__ get_progress set_data get_related_entities mpe ModelMock -- - _init__
(_debug.py:36) (_debug.py:75) (scheduler.py:275) (scheduler.py:108) (scheduler.py: 134) (scheduler.py:175) (scheduler. py:282) (scheduler.py:291) (scheduler.py:80) (scheduler.py:211) (scheduler.py:231) (simmanager.py:347) (simmanager.py:350) (simmanager.py:449) (simmanager.py:453) (simmanager.py:567) (simmanager.py:461) (simmanager.py:520) (simmanager.py:445) (scenario.py:330) B E (exceptions.py:19)

_keep_running_func

actory. _init__.get_wrapper

keep_running
(scheduler.py:102)

- = _assert_async_requests call.
(simmanager.py:587) i

(scenario.py:348)

check_time
(scheduler.py:88)

create
(scenario.py:353)

_check_params
(scenario.py:372)

_make_entities
(scenario.py:380) -

_assert_model_type
(scenario.py:404)

Entity
(scenario.py:417)

full_id
(scenario.py:440)

(scenario.py:421)

_static/mosaik_logo_icon.png

_static/pyan/mosaik_nodef.py.dot.png
simmanager

simmanager.RemoteProcess simmanager. LocalProcess

start _get_proxy stop _init__ _get_proxy stop __init__
(simmanager.py:37) (simmanager.py:434) (simmanager.py:414) (simmanager.py:406) (simmanager.py:393) (simmanager.py:388) (simmanager.py:372)
e _
scenario AN
sipfmanager. MosaikRemote scenario.ModeIMock scenario.ModelFactor
start_proc start_connect validate_api_version set_data get_related_entities mpe get_data __init__ get_progress stop MosaikRemote World __init__ _call__ __getattr__ __init
(simmanager.py:567) (simmanager.py:461) (simmanager.py:445) (simmanager.py:520) (simmanager.py:449) (simmanager.py:453) (simmanager.py:339) (simmanager.py:439) (scenario.py:32) (scenario.py:340) (scenario.py:348) (scenario.py:320) (scenario.py:296)

(simmanager.py: 144) (simmanager.py:184) (simmanager. py:274)

scenario.ModelFactory._jnit__

ModelMock
(scenario.py:330)

make_proxy
(simmanager. py:208)

e -
ﬁ l scheduler
_assert_async_requests _check_model_and_meth_names run sync_call connect_randomly connect_many_to_one create
(simmanager.py:587) (simmanager.py:347) (simmanager. py:350) (scheduler.py:11) (util.py:47) (util.py:82) (util.py:71) Qﬂa{io.py:SSS)

‘ scenario. World ‘Scenario. ModelFactory. _init_| get_wrapper
start_inproc ter sim_process _connect_randoml, _connect_evenl, __init__ ret_data run connect start _make_entities _check_params
P! greel 1y ly ly & Y
(simmanager. py: 105) (simmanager.py:223) (simmanager.py:261) = (scheduler.py:44) (util.py: 144) (util.py:128) (scenario.py:60) (scenario.py: 166) (scenario.py:217) (scenario.py:117) (scenario.py: 104) (scenario.py:380) (scenario.py:372)

scenario.Entity

disable
(_debug.py:30)

enable
(_debug.py:16)

Entity
(scenario.py:417)

_init__
(scenario.py:421)

full_id
(scenario.py:440)

_assert_model_type
(scenario.py:404)

_str__
(scenario.py:445)

shutdown
(scenario.py:257)

ModelFactory
(scenario.py:285)

_check_attributes.
(scenario.py:266)

1t_check
(scheduler.py:291)

t_sleep
(scheduler. py:282)

step
(scheduler.py:211)

wait_for_dependencics get_input_data

(scheduler.py:175)

step_required
(scheduler.py: 108)

get_keep_running_func
(scheduler. py:80)

SimulationError
(exceptions.py:14)

_init__
(exceptions.py:19)

ScenarioError
(exceptions.py:7)

get_outputs
(scheduler.py:231)

get_progress
(scheduler. py:275)

(scenario.py:449)

LocalProcess
(simmanager. py:370)

RemoteProcess
(simmanager. py:404)

(scheduler.py:134)

([scheduler. ge\ keep_running_func

keep_running
(scheduler.py:102)

(_debugpy:21)

SimProxy
(simmanager. py:298)

post_step
(_debug.py:75)

check_time pre_step
(_debug.py:36)

(scheduler.py:88)

_static/mosaik_communication_adapters.png
Energy Market
Simulation

.
N

Energy Storage
Simulation

€| -

0

Grid Simulation Traditional Power

I Generation Simulation

I

4 . . ™
Co-simulation Framework

.:mosaik
...

>

I

Communication Energy Consumption
Simulation Simulation

Communication between and scheduling of
simulators via the mosaik framework

(_)

Renewable Energy
Simulation

Weather Data

_static/graphs/execution_time_simulator.png
Execution time [s]

Execution time

0.005 -

0.004 -

0.003 -

0.002 -

0.001 -

0.000 -

— ExampleSim2-0
— ExampleSim-0
—— Collector-0

2 3 4 5 6 7
Simulation time [steps of the simulator]

_static/mosaik-api.png
Implemented
by User

Provided
by mosaik

Simulator with
Low-level API

Simulator

Interface

mosaik

Simulator with
High-level API

Simulator

Interface

Baselnterface

JSON

3
o
@
=
Al
o
2l

socket

mosaik

_static/pyan/__init__.py.dot.png

_static/graphs/executiontime.png
Collector-0 -

ExampleSim2-0

ExampleSim-0

0.000 0.005 0.010 0.015 0.020
Simulation time [s]

_static/pyan/_debug.py.dot.png
_~ Zdebug

disable
(_debug.py:30)

enable
(_debug.py:16)

pre_step post_step
(_debug.py:36) (_debug.py:75)

_static/pyan/_debug_nodef.py.dot.png
disable
(_debug.py:30)

pre_step
(_debug.py:36)

_debug

enable
(_debug.py:16)

(_debug

post_step
(_debug py:75)

_static/mosaik-ecosystem.png
%

mosaik
{ eco-system

oge

_static/mosaik-slide.png

_static/pyan/_version.py.dot.png

_static/graphs/execution_graph_weak.png
ExampleSim-0 -

0000000000

_static/mosaik-api-sequence-step.png
step()

get_progress()

progress

_static/graphs/execution_graph_timeshifted_weak_sliced.png
Collector-0 -

ExampleSim2-0 -

ExampleSim-0 -

)

_static/mosaik-api-sequence.png
e I
T

init()
meta
PP L
loop] create() .
entities
L icooooooooamdEEl ccocooooad
setup_done()
I S
loop J step()
time_next_step
m mmm e E SR STER
stop()
!

_static/pyan/simmanager_nodef.py.dot.png
simmanager

simmanager.RemoteProcess simmanager. LocalProcess

_init__
(simmanager. py:372)

_init__
(simmanager. py:406)

start
(simmanager.py:37)

stop
(simmanager. py:414)

_get_proxy
(simmanager. py:434)

stop
(simmanager. py:388)

_get_proxy
(simmanager. py:393)

simmanager, S simmanager.MosaikRemote

MosaikRemote
(simmanager. py:439)

_init__
(simmanager. py:449)

init,

L set_data
(simmanager. py:305)

(simmanager. py:567)

start_connect
(simmanager.py:184)

start_proc
(simmanager. py: 144)

validate_api_version
(simmanager. py:274)

get_data
(simmanager. py:520)

get_related_entities
simmanager.py:461
\ger-pY:

stop
(simmanager. py:339)

get_progress

e
(simmanager. py:453) (simmanager. py:445)

_check_model_and_meth_names
(simmanager. py:350)

make_proxy
(simmanager. py:208)

_get_proxy
(simmanager. py:347)

_assert_async_requests
(simmanager. py:587)

‘manager. make_p:

terminate
(simmanager. py:261)

start_inproc
(simmanager.py: 105)

greeter
(simmanager. py:223)

LocalProcess
(simmanager. py:370)

RemoteProcess
(simmanager. py:404)

SimProxy
(simmanager. py:298)

_static/odysseus_operator_preprocessing.png
Crossproduct

KeyValueToTuple

ApplicationTime

MetadataCreationPO

_static/pyan/util.py.dot.png
connect_randomly
(util py:82)

connect_many_to_one
(utiL.py:71)

sync_call
(util.py:47)

_connect_evenly
(util.py:128)

_connect_randomly
(util.py:144)

_static/odysseus_queryplan.png
Aggregate

ApplicationTime

A
)
<
<
o
c
5

ERER

ToTuple

_static/pyan/util_nodef.py.dot.png
util

connect_randomly
(util py:82)

connect_many_to_one
(utiL.py:71)

sync_call
(util.py:47)

_connect_evenly
(util.py:128)

_connect_randomly
(util.py:144)

proc
(util.py:58)

_static/tutorials/jupyter/2-venv.png
<«

[Felect an environment type \

Conda Creates 3" conds’ Conda environment in the current workspace

_static/odysseus_visualisation.png
voltage absolute voltage deviation

200 10
2375 g
25
5
2350 5.
Zoms 5,
& 2300 g6
| e s
$ oo £
S s
225 N
2200 E
31
01:0000 010410 010820 011230 2
simulation time = 0

01:00:00 010410 010820 011230

[odysseus_0.Vm PyPower0.0-trsec (0] it vime.

|— odysseus_0.vm.pypower0.0-node_a1 (0)

| odysseus_0.m.PyPower0.0-node_d2 (0) [dev_t7_sec_vm (0) —dev_Nodel_vm (0)
| odysseus_0.vm.PyPower0.0-node_a3 (0) | dev_Node2_vm (0) dev_Node3_vm (0)
|- odysseus_0.vm.pypower0.0-node 44 (0) | dev_Nodea_vm (0)

_static/tutorials/jupyter/1-kernel.png
<« Select Another Kernel

Type to choose a kernel source

Python Environments...
Existing Jupyter Server...

_static/tutorials/jupyter/4-requirements.png
B | Select dependencies to install

Tsdeaet | (oK)

@ requirements.txt

_static/plus.png

_static/tutorials/jupyter/3-python.png
[belect a Python installation to create the virtual environment |

+ Enter interpreter path...

Python 3.11.2 64-bit fust/bin/python3

_static/pyan/scenario.py.dot.png
World

_scenario

scenario. Wor]d

soen;m’Mode]Fmory

scenario.ModelFactory.

ModelMock
(scenario.py:360)

ModelFactory
(scenario.py:315)

scenario.ModeIMock

Entity
(scenario.py:447)

scendrio. Entity

S e

_static/mosaik_logo_simple.png
.:mosaik

_static/pyan/scenario_nodef.py.dot.png
World
(mosaik.py:32)

atio. World.get_data

mosaik.scenario. World

mosaik.scenario

ModelFactory
(mosaik.py:333)

mosaik.scenario.ModelMock

mosaik. scemnb; tity ; ’

mosaik.scenario.ModelFactory

‘mosaik.scenario.ModelFactory.

it__

mosaik.scenario.ModelFactory.__init_

| get_wrapper

Entity
(mosaik.py:465)

ModelMock
(mosaik.py:378)

_static/mosaik_logo_wo_text.png

_static/pyan/scheduler.py.dot.png
wait_for_dependencics
(scheduler. py: 146)

sim_process
(scheduler. py:47)

t_sleep
(scheduler. py:305)

get_input_data

step_required
(scheduler.py:187)

get_keep_running_func
(scheduler.py:113)

(scheduler.py:85)

keep_running
(scheduler.py:107)

check_time
(scheduler.py:93)

step
(scheduler. py:223)

1t_check
(scheduler.py:314)

get_outputs
(scheduler. py:244)

schedule_events
(scheduler. py:341)

get_progress
(scheduler.py:298)

activate_new_event
(scheduler. py:329)

_static/pyan/scheduler_nodef.py.dot.png
mosaik.scheduler

- get_keep_running_func

_static/pyan/simmanager.py.dot.png
(sim

(sim

start_connect

validate_api_version

manager.py:187) (simmanager. py:277)

make_proxy
manager.py:211)

terminate
(simmanager. py:264)

greeter
(simmanager. py:226)

RemoteProcess
(simmanager. py:407)

(simmanager. py:409)

_get_proxy
(simmanager. py:437)

(simmanager. py:417)

SimProxy
(simmanager. py:301)

start_proc

(simmanager.py:147)

start_inproc
(simmanager.py:108)

LocalProcess
(simmanager. py:373)

stop
(simmanager.py:391)

_get_proxy
(simmanager. py:396)

_check_model_and_m

(simmanager. py:353)

eth_names _get_proxy

(simmanager. py:350)

e
(simmanager. py:448)

MosaikRemote
(simmanager. py:442)

_init__
(simmanager. py:452)

set_data
(simmanager. py:570)

simmanager.MosaikRemote

get_data
simmanager.py:523;
\ger-pY:

_assert_async_requests
(simmanager. py:606)

get_related_entities
(simmanager. py:464)

get_progress
(simmanager. py:456)

get_blocked_time
(simmanager.py:591)

_static/network-messages.png
Type ID Content

A

\x00\x00\x00\x18 [1, 42, "Hello mosaik!"]

— I — _
—~ "

Header Payload

_static/odysseus_dashboard.png
node2

o

ns

[.

ns

o

e

=
M nodel

o

e ns

) DN o W
s

PR W a

Ty
| netopasnssngn

00

e
| nesopasnssngn

tr_sec

noded

i

=
» —a\“\.ﬁfwh(
=

=

Ly
et pasnssng

_static/odysseus.png
Odysseus

_images/controller_3.png
Initialize with 7_hp_sp_h and
T hp_sp_|,
hp_status = ‘off”

Receive bottom_layer T

bottom_layer T
<T hp sp_1

No

Yes

hp_status unchanged

Yes

bottom_layer T
>T hp_sp h

hp_status = = ‘on’

No

hp_status = “off”

No

hp_status = “off”

hp_status = ‘on’

_images/controller_4.png
Initialize with T_hp_sp_h and
T hp_sp_1,
hp_status = ‘off”

Receive top_layer Tand
bottom_layer T

top_layer T <
T hp_sp_h

No

hp_status = ‘on’ hp_status unchanged

No

bottom_layer T hp_status = ‘off”
>T hp_sp 1 -

Yes No

hp_status = “off”’ ‘ ‘ BD_Status = ‘On’ [oo

_images/controller_1.png
Initialize with T_hr_sp_dhw

Receive dhw_demand,
dhw_out_Tand dhw_in_T

|

Calculate dhw_in_F

dhw_out T >
T hr_sp_dhw

Yes No

Adjust dhw_in_F

P hr_dhw =0 Calculate P_hr_dhw

Send flows to HWT
dhw_out F =-dhw_in_F

_images/controller_2.png
Initialize with 7_Ar_sp_sh and
sh_dT

Receive sh_demand and
sh_out T

Calculate sh_in_F

Yes No
sh_in_T=sh_out T—sh_dT sh_in T=T hr_sp sh—sh_dt
P hr sh=0 Calculate P_hr_sh

Send flows to HWT
sh_out F=-sh_in_F

_images/dataflowGraph_timeshifted_weak.png
';)Ilector-o

.<ampIeSim-0
)
L)

.<ampIeSim2-0

_static/UML/activity/scenario.py.dot.png
World

_scenario

scenario. Wor]d

soen;m’Mode]Fmory

scenario.ModelFactory.

ModelMock
(scenario.py:360)

ModelFactory
(scenario.py:315)

scenario.ModeIMock

Entity
(scenario.py:447)

scendrio. Entity

S e

_images/demo_3.png
ExampleMasterCtri-0

ExampleCtrl-0

ExampleSim-0

_static/UML/activity/scheduler.dot.png
? H

This module is responsible | Gef run(world, unti, | et sim_process(world,

? ? !

(u!.c..m,m‘.) (cetkeep.rmin) [“*"&.‘:ﬁﬂﬁ:;’“)

def step(world,

for performing the simuation sim, inputs)

e rt_sleep(r_factor,
t_start, sim, world)

sim, unt, t._facior,

i factor=None,

def get_progress(sims,
unil)

f_star,r_sinct, sim)

' Return 2 dicionary i the mput
! P — datafor “sim". The dict il look e
i Rt simaaton or 2 et an clas i events Event Roturm an oven et {nmame s 0.0 Aavance sep)a smultor Gt al equred oupt
] s"-mosaik scenaro Word Retun & funcion fhat B A (class: smpy evenis AIO) val 0, .rc_ed - val o).} “sim wih he gven “npuis data fom a Smlator s
“inu has oo reache Simpy Smlaion process Uses 1 e ham o y o ek e e | et el aready be rggered deponcenes can provde nput i3 e it an ach oy s e~ Shenne Sepwas e vt o o S e ST
rom tme mpor) | Relun e fna) <imuiion Decsoninputs Y Simulton proces cing on whether Decsorinputs e oo sep) ((Teb ek ime0 and | et e ke Gat for s o notly dctwilhaibutes and & o vales “inputs s a Getonary hat rne the dta o “Reumtecurent][t reartime mode, | pecomnpu Checkifsimuion's |~ pec o
perf_counter time. See t_factor is not None and rt_factor <= 0 . the process has any world,df_graph.out_degree(sim sid) <unil ol e e o any simulator that s already This is, because we may have inpus from maps entity IDs to data Return an event that is progress of the simut Cheek f o Sieep and do U factor o o or 2 g T factor
meth: mosak scenario World.run() Successors in the datafiow roene T aeadly waiing fo it ~world~ waltng to perform it next mulple simulators (.., difirent tionaries which map attribute red when al outpu percent : any A fac
fora detaled descripton B graph,the condiion for B ready waitng for . Step. world s & mosaik Consumers hat provide loacs for node names 0 st of values (see data s received. world is T T T ;
of the *1t_factor* and P when to stop differs = o class: -mosaik.scenario ina power grid) and cannot know how to func:"get_input_data amosaik iclass; i | / i
s s G e ot oo b o] ok scenano | i !
T B NWord s & mosaik T 1 ! H
. | - class: ~mosaik scenario World i ! i B
: ; ! 1

- v

ot _oata s pu_bufer
If a sim process has no successors (no one needs its data), If there are any successors, we also check if they are still alive. ‘sim.step_required = world.env.event() «Decisioninput» npuL_c = times = [min(until, sim.next_step) for sim in sims values()]
Trom mosalk exceptons import Simulatonor : Sminput bute Decsonimp | (S4=sme Do
trom mosak exceptons mpor Simuatnt t_strt = prf_counter(we just 1 all successors have fished, there's no need fr us (0 contnue @ (‘) | g = worddtgraph g out_degree(sid) = O or any((wia event in dglscs) for et 0 eeh, wordshited.raph] pecsoninptr | (SAAEmE o ouaiisl cisioninpub
o hee o check he tme of s ne st rning Sa= simsid S n g sucoessorsto) gephs = wotdd_graph wordsited gt pe(re ot e v, tma - 1001 uni
. fest \guot ~ est

orocs = worid simsfsuc_sid] Stop = requira f here st 0 cate mat e
env=wordeny Sim-proc fo suc_sid Astepis required it i Check i all predcessors have sicpped far enough foriin “Decsoninpur Juetto e ot er_counter) -r_start Decisoninp “Decisoninput | ("_passed = per_counter) - r_siart
i< but mustbe > 0° 55 eep_unnin e o outgong edges or Steplget < complete)
o setup_done_evts = [| p_running world df_graph successors arS 10 outaK o 10 provide the required input data for us: range(len(graphs)) next_step <= simast_step steplget is completely sleep>0 delta >0 dalta = t_passed - (ft_factor * Sim.next_step)
o fone ofthe d
sl |
i 1
! raise SimulationError(next_step
forsimin Decsionnpu Decsioninpu> o[tep_requred or dep_sidn T s mustbe of ypant, bt Decsioninpu>
word smsvalues) || simmetatap. version] >= 2.2) eep running() succeed) g predcessors(sim.ic) flredec s i or st
— T sim.sid)) .
Endtor ! =T
| . e SimanErotrex_ep
1 . ; . Check 2 suoessor ey requestaata o us Gatons - s bo > st step, but
yield enval_of setup_done(was added in s -~ i_for_dependencies(tiggers the event when i creates e ay rea B Decisoninpu e be > lasi yield word enviimeout
neq w vetum keep_nunning : W ot step any furner unil v successor may o longer requre [dep = word simsdep_sid] Ives) araphise s <2 Ses - or multor ol ol
{setup.tone.evis) APl varson 2.2 o cannl siep any urher il e s tinword,__cache and dep. 3 m word,__cachef(] gaphelle R ieen)
T Vit event for“sim Lstp. o simiast step s sc)
= ! [ves] | (Noj
. sefore we stop, we wake up all dependencies who may be waiting for \ - reate a cache entry for aise RunumeError(Simulation prini(Simulation (00 slow
etup cone_ovsappena o we sop we vake up o deperdercie i may be wat ! o st roearoa”) [CPRGE al predecesors il e sed g oo Wkt ep- s s Torsro_i,dest e, Crasn acache sty & oo o Tea e forreaame fsor v
(sim.prowy.setup_done() Drocess et for which hey need 10 provide data s | step_reaq have stepped for enough to provide the requred input data: ot data fo et atrs n datafiows Svery point i time the factor ' 96s' % Séss oehind time. 9%
i o . - i T e t_factor) (rt_factor, delta))
3 '
orpre_sidin ! = wordenvevent)
forsimin Decsionpus | | yied step_required B Desionnpu Decisoninput> Toriin ange(smast_step.
word _graph predecessors e g = word shified_raph . ’ evens.appendev)
\ |
proc = env.process(sim_process{world, sim, unt, t_factor, r_stic) econinpu | ((evi = word simsipre tor dep_s caches(simnext_steplsrc_sidsrc_eidsrc_at] Create cache entres for | Fame e
Sim.sim proc = proc yield envall_of(procs) cDecisoniouty ([word smiore. L L. I ‘vals Input_data, setdefault(dest_eid,) Seldefaul(dest_att, 0) the data rom tme-sned (%209 cochefifsimsi
procs.append(proc) 199 p_teq lo.p vals[FULL_ID % (src_sid, src_eid)] connections. =
o) i
e Ve b woken up by 2 teminating siccessor yield wai_for_depencencies et workdenvall_ot Decmonmu | | (oo ol
Comnectiontior s e Check i we can a1 810 o need 1o keep runing {wor.sim) fovents) deprensop<t | || Sremsaspenden) [i asyn succoed)
endion
opteratont world_shited_cache[]setdefau(simi6. 0)) (" oy s sim e
“aise SmuatonEror(Smulator p . = wordenvevent) e S
i closed s connection il rom oot facor, events append(ev) Mol oy smietors waliog
% sim.sid, €) e clg[dep_sid][sim.sid][wait_shifted" -
for sue_sidn
Pl sl goeh
- Input« successors(sid)
N lator: —
T eheck(t_faco, oty simulalors waiing ord dl_graphlsisue_si] Decisoninpi
fox asyrc. e world sims{suc_sid] ‘wait_event in edge and dest_sim.next_step < next_step.
forpre_sidn
Jied rom Jorpre sidin -
Get_ouputs(vorid, sim) predecessrs(s)
nd for]
ot sm_progress = get_progress(word s, ant) Notty smulstors waiing Decsoninp g6 = woridof_prapnipre_sild] e ——)
Prn(Proiess. o 260 3¢ word s, progress, end=1r) fortme-shified nput wait_async in edge and pre, s next_siep pre-sm - word smapre. 5] succeed)

for suc_sid in
Prune datafiow cache world shifed_graph
T successors(sid)

i for]

! v

edge = world.shifted_graphisicfsuc_sid]
dest_sim = world.simssuc_sid]

min_cache_ime = min(s last_step
forsin
world sims values()

Decisioninput>
‘wail_shifted in edge and dest_sim.nex!_step.

edge.pop(walt_async)
succeed)

foriin
range(world._di_cache_min_time,
min cache_tne)

edge. pop(wait_shift
succeed()

«Decisioninputs
KeyErmor

el world._di_cachel

_images/x_axis.png
©0 Superset v - a x
« > c
OO Superset dasmooaras Crarts Datasets 0L+ setings -
Example B e [
Chart Source I oA @ cusTomizE
Required control values have been removed
B testmutti21Example H Select values In highlighted field(s) in the control panel. Then run the query by clicking on the "Update chart” button.
UNECHART W W B G
View o chars:

Search Metrics & Columns

Metrics

Showing 1011

Jfin) COUNT() @

Columns

Showing 8 of 8

[}

time.

atc src_sim

st src_entity

3

3

va_degree
Pgen
pmw
vm_pu

amvar

Query

XA OO

SIMPLE CUSTOM SQL

+ Drop a column here g

METRICS ©)
+ Drop column: COLUMN E
DIMENSIONS 8 column(s) E

@© time

None abc src_sim
FrERs abc src_entity
% time (No

+ Drop columns/]

va_degree

SERIES LIMIT # P_gen
None

p_mw
soRTBY

+ Drop a column/metric here or click

RO LIMIT
1000 v

TRUNCATE METRIC

SHOW EMPTY COLUMNS

Advanced analytics © v

UPDATE CHART

P.gen pmw

NiA

o |

NiA

w

NiA

o014

.
i

0.005999999999999995 023710000000000016

0.000789999999999999

0.071999999999999997

o001

-0,021000000000000005 0.000789999999999999

NiA

65255479118 0.001976000000000002

NiA 0,004000000000000002

0001581

2365255479119 0000000000007

0014

0.003000000000000001 0.0011859999999999996.

37000000000000005 0.0011859999999999996.

Run a query to display results

_static/UML/activity/simmanager.dot.png
?

“The simulation manager s
responsible fo starting simulation
processes and shuting them dovn.

nanages the communication
. mosaik and the processes.
Itis able to start pure Python
simulators in-process (by importing
and instantating them), 0 start
external simulation processes and
to connect to aready running
Simulators and manage access to
them

from ast import

import collections
import copy
importimportib
import os.

import shiex
import subprocess.
import sys.

from simpy.io import select as backend
from simpy.io.packet import PackelUTF8
as Packet

from mosak import _version
import mosak_api

from mosaik.excepions import ScenarioEror, SimulationEror
from mosak utl import sync_process

from simpy.o son import JSON as JsonRpe

Start he simulator *sim_name" based on the configuration
im “world sim_conlig", give 1t the ID *sim,_id* and pass the
parameters of the dict “sim_params* (i The sim config
Is a dictionary with one entry for every simulator. The
entry itsel tells mosaik how to startthe Simulator:: {
ExampleSimA':{ python’:‘example_sim.mosaik ExampleSim
}. ExampleSimB" {"ema’ ‘example_sim
). ‘ExampleSimC:; { ‘connect
“ExampleSimA* s a pure Python simulator. Mosaik wil import
the motdule ~example_sim.mosalk” and instaniate the class
ExampleSim" o start the simlator. ‘ExampleSimB would
Started by executing the command *example_sim* and passing
the nework address of mosaik das command line argument.
You can optonally specify a *current working directory”.
It defauls 1o .. “ExampleSimC* can not be started by
mosak, 5o mosaik s o connect ot The function
retuns a class: mosaik_api.Simulator” in traises
a texc:~mosak exceptions. SimulationError f the simulator
ould not be started. Retur a class: SImProxy
insta

JSON is actually
an ob

Current major version
of the sim API

«Decisioninputy,

Sm_config
world sim_config
[sim_name]

Try available starters in that order and raise an error f none

A A
"API_MAIOR rrent minor version
version.version_info[0] | of the sim AP

\ A
"API_MINOR = Current version
version.version_infol1] | o the AP

A A

"API_VERSION = s 545 %) [Separator for
(APTMAJOR, APILMINOR))| fullery 1D=

v

enduy

Taise ScenarioError(Simulator
965" could not be started

Not found " in sim_config'

9 sim_name)

D\ [Tempiate for fullenty

FULL_ID_SE 1Ds (sid eid)

Starters
collections.OrderedDict
(python=start_inproc,

connect=siart_connect)

Y
«Decisioninput> for sim_type, start in
sim_type i sim_confg Starters.tems()
No]

Taise ScenarioEror(Simulator
365" could nol be started:
“Invalid configuration”

9% sim_name)

<Deciioninput».
ScenarioError as se

Taise ScenarioEror(Simulator
“Sés" could no be siarted:”

*Invald version "%
965 % (sim_name,
proxy.metafapi_version]
Jse))

fexcepy)

retum proxy

instantiated

Gef start_inproc(world,
sm_name, sim_config,
sim_d, sim_params)

de start_proc(world,
sim_name, sim_config,
Lid, sim_params)

Import and instantate
the Python simulator
“sim_name based on ts
onfig entry *sim_config”
Retur a class: LocalProcess”
instance. Raise a
ScenarioError
Simulator cannot b

Starta new process for
simulator *sim_name based
onts config entry
*sim_config”. Retur a
classRemoleProcess
instance. Raise a

mosaik.exceptions
ScenarioError

Simulator cannot be

replacements
sys.executable, |
sim_configlemd] % replacements
omd = shiex split(cmd, posix=(0s.name 1= nt))
im_configlcwd] if‘cwd in sim_confg else '

Cadar 96s:5%s' % (world.configladdr 0], world.configladdr][L]), ‘python

Gef start_connect(world.
sm_name, sim_config,

def make_proxy(world,
sim_name, sim_config
sim_id, sim_params,

proc=None, addr=Norie)

Connet
funning simulator *sim_name*
based on is conli
“sim_config”. Return a
classRemoleProcess
instance. Raise a
mosaik.exceptions
ScenarioError
Simulator cannot be
instantated

Try 10 establish a on
with “sim_name* and perform the

init)" AP call, Return a
new ‘class: RemoteProcess’ sim
proxy. Raise a

‘exc:"-mosak. exceptons. ScenarioError
if something goes wrong. This

method is a SimPy process used
by :funcstart_proc()” and

func: start_connecl()

Waitfor connection
from "sim_name

Make a copy of the current env. vars dictionary and update it

v

Decisioninput>
(AtibuteError, ImportError, KeyError, ValueEror) as err

“mod_name, cls_name = sim_configlpyhon] Spli(:
importi import_module(mod_name)
jetatir(mod, cls_name)

Decisioninputs
Sys.version_info.major <=3 and sys.version_info.minor < 6

envupdate(sim_config.get(env,)

pass the new env

{outsize” 1.
‘owd cwd, universal_newines'

‘meta’ s module global and thus shared between all ‘LocalProcess
instances. This may leed o problems if a user modfies i, So make

“sim_params))| 4 geep copy of it or each instance

“Getail_msgs = { ValueEror
“Malformed Python class

‘name: Expected ‘modle Class'

ImportError: ‘Could not
import module: %s'%
errargs[0], AttibuteError:
“Class ot found In
module’, }

“Getail_msgs = { ValueError
‘Malformed Python class

name: Expected ‘module:Class'
ModuleNotFoundError: ‘Could

notimport module: %' %6
ertargs[0] AttrbuteError
‘Class not found in
module’,)}

meta = copy deepcopy(meta)
retun LocalProcess(sim_name, sim_id, meta, sim, world)

Decisioninput>
(FileNotFoundError, NotADIrectoryError) as

ubprocess Popen(cmd,
“owargs)

Noj

“Getals = detal_msgs[iype(ern]
raise ScenaroError(Simulator s could not be started: %s'%
(sim_name, details) from None

endury

A A

Taise ScenarioEmor(Simulator
365" could no be stared:
365”56 (sim_name, e.args{1]))

make_proxy(world, sim_nam:

AT T— j

®

Start_timeout = world env.imeout(world.confg[star_timeout])
fone if proc is None else terminate
return sync_process(greeter(), world, ertback=ch)

A 4

P

def terminate()

worldsrv_sock aceept()
jeld accept_con | start_tmeout

Decisioninputs

start_timeout n results

fexcept)

Decisioninput>
ValugError

addr.stip(spli(:)
adar = (nost, int(port)

Taise ScenarioEror(Simulator
“3és* could not be stared:
Could not parse address
Vs 06 (sim_name,
sim_config{connect’))

from None

proxy = make_proxy(world, sm_name,

"_config, sim_id, sim_params,

Taise SmulationError(Simulator
96s" did not connect (0

‘mosaik n time. %6
sim_name)

fexcepy)

‘Add a error callback that
waits for "proc” o stop
i “proc* s not None:

Raise a exc: “ScenarioError

wrong or does not match
the min requirements

simulator. I stores its
Simulation state and own
the proxy object o
external Simulator

‘See f it termin

Connect o "sim_name’

N\

Sock = backend.TCPSacket connection
(worid env, adar)

Decisioninputy
(ConnectonError, OSErmor)

«Decisioninput>
subprocess. TmeoutExpired

“Decisioninputy version_tuple

excep] (Dmcwa\uumeem:ﬂ fexcepy

u(version) spi(.)
wple(map(ini, version_tuple))

results{accept_con]

Yy

7

“Decisioninputy

A

def _check_model_and_meth_names
(self, models, api_metnods,
extra_methods)

‘lass LocalProcess.
(SimProxy)

def _get_proxy(sel,

sid, meta def stop(self)

‘Check i there are any
S in model names
and reserved AP methods

Stop the simulator

A A

selfsid = sid
meta

Meta data and remc
was called before the SimProxy was created

thod checks

as well as in them and
extra API methods. Raise

behind the proxy.
defaultimplementation

raise NotimplementedError Proxy for nteral

self_world = world

Set default value for
optional "exira_methods’

“exira_methods = meta.setdefauli(exira_methods’)
sell._check_model_and_meth_names(metaf models], api_methods,
extra_methods)

A 4

“36s" could not be stared:
*'Could not connect to
35 % (sm_name,

Taise ScenarioErmor(Version
pars of %r must be integer
96 version) from None

proc terminate()
proc wait(imeout=1)
ne)

‘Set default value for
optional "any_inputs’
property

A A
Decisioninputs for model, props in
ot (v_tuple[0] == API_MAJOR and v_tuple[1] <= API_MINOR) | | metafmodeis?.items()

‘Actual proxy object

sim_configlconnect’))

Tpc_con = Jsony
max_packet_size=10'1024

“1022)

Taise ScenarioError(Version
must be formated like
"major.minor", butis %

96 version) from Norie

pe(Packet(sock, [Make i) AP call and

forsim_nam

= rpe_con.remote.ini(sim_c.
*sim_params)

Tase ScenaroEror(Version
must be between S4(majons.0
and” S4(major)s.4(minor)s
96 (major: API MAJOR,
NOR)

Decisioninput>
ConnectonError as e

Tesuls = yield
init | start_timeout

aise SimulaonError(s
“Sés" closed is connection
during * the ini(call

9% sim_name, &)

Decisioninput>
start_timeout in resuits

[ves]

56 sim_name)

mulator

aise SmulationEror(Simuator
565" did not reply 10 the.
init)*“call n tme,

‘meta = resulsini]
return RemoteProcess(sim_name, sim_id, meta, proc, fpc_con,

Self_get.proxy(api_methods
+ extra_methods)

def _get_proxy(sel,
methods)

A A

def _init_(sell, name,
sid, meta, proc, pc_con,

Class RemotePracess

def _get_proxy(sel, @sonRpe. Descriptorclass

rpe(JsonRpe. Accessor)

wartd, sim_id)

] ((onss Mmmm)(

@mc @rpc
def get_progress(sel) de get_related_enties(sell, entiies=None)

Seli_proc = proc
Self Zrpe_con = rpe_con

RPC interface for remole

‘Send a ‘siop* message Return the current

"Add MosalkRemote and paich
its RPC methods to return

Vield a tiggered event

self_in but do nothing else

does nothing

ScenarioError if

o a proxy for the
local simlator

Return a proxy object

processes to query mosalk
and other processes
(simulators) for data whie

Proxy for external
simulator processes.

el _mosalk_remof

fosalkRemote(world, sd)
orid.configlstop_timeour]

ocess represented
by this proxy and

smulation progress from

for the remote att -mosaik scenario

Self stop_timeout

A 2

1o terminate.

pc_con router = self._mosak_remote.fpc

super()._int_(name, sid, meta, v

they are exccuting a World.sim_progress

Return information about he related enities
of enites*. I “eniies* omitted (or “None")
return the complete entity graph, .9 { nodes'
sid_0.6id_0" {type’A}, sid_O.eid 1

{1ype’ B, "sid_Leid 0" {type’ C).]

‘edges: [['sid_0 eid_0, ‘sid_1ed0’, {}
[sid_0.eid_1""sid_Teid0’ {1,1,} 1

“enties* s a'single sting (6.9 “sid_1Leid_0°)
return a dict containing alleniies related 1o
that entiy::{ sid_0.eid 0" {type” A}
'sid_0.eid_1 {type. B,] If ‘enitie

alistof eniy IDs (e.q., [sid_0.eid_0
sid_0.¢id_L]"), return a dict mapping each
entiy to adict of related enites: {
sid_0.¢id_0' ('sid_1eid_0" (ype’ B,

aise NotimplementedError “Decisioninput

illegal_models = sel(models) & set(api_methods) llegal_models

instmosaik
MosaikRemote(world, sd)

self_inst finalize()

ise ScenarioEror(Simulator

proxy_dict = (name: mosaik_api geLwrapper(getatt(self_i
in meihods)
Proxy = ype(Proxy’, (, proxy_c
retu Proxy

pe_con remote.

Sid_0.eid_1" {'sid_1.eid_1" (ype’ B,
)
A
eturn selfworld graph = seffworld) [<Decisioninputs
sim_progress eniity_graph entities s None

for attr in
dirinst mosaik)

“eciioninputs
atsarswin(_)

yield sell_world.env,

End for

5 uses illgal model

names: %s' % (self.sid, Decisioninputs

ilegal_meths

(suosv()
S, meia, wold)

init_(name,

(iegal_models)))

Takse ScenaroEror(Simulator
“3es” uses llegal extra

‘Smulation state method * names: 3és' %6

“Join(llegal_meths))

Buffer used by

MosaikRemote set_dat

selfinput_buer

SmPy process

SimPy event

ired = None

selfstep_eq.

func = getatu(inst mosalk. Decisioninputs

hasatrfunc, _call__) and hasatt(func, pc)

Setat(nstmosaik, at,
mosaik_apiget_wrapper(func,

repackage Nodeviews and
fews to maintain
compatbily

Decisioninput
ConnectonError

imeout = sell_world.env.imeout(sell_stop_tmeout)
es = yield (sefl_rpc_con remote.stop{ | imeout)

«Decisioninputy
timeoutin res

Decisioninput>
typeeniies) is s

(= lteral_eval(str(graph.node(data=True)))
dict({rode[0]: node[1] for node in nodes.list)
teral_eval(st(graph edges)
upieisi(edge) + [{] for edge in edges_lst)
retum Tnodes': nodes. it ‘ecges': edges, tple)

We may get a ConnectionError f the remote sit closes s

Socket during the "stop()"c

edges_tuple

prini(Simulator %" 6 not close its connection in tme. %

self_rpe_con close()

“«Decisioninput

etum {eid: - graph.node(n]
for nin graphleid]) for
eld n enites }

et {n: graph nodeln]
for nin graphlentites)

‘Query simulator for data
ot n the cache

(Endor]

“dep = self world sms[sid]
assert (dep.next_step > sim last_step
dep_data = yield dep.proxy.get_atafaltrs)

@rpc.process
def get_datasell, atis)

@rme
de set_datasell, data)

g, src_sid, dest_sid)

et _assert_async_requests(sel,)

Return the dat

attributes “ats*.

dictof (fuly qualfed) entty

DS mapping to lsts o attibute
‘sideid' [atr1

11°). The return vallie is

a dictionary, which maps the input

entity IDs {6 data dictionaries,

which in turn map atrbute names

1o theit respective values:

‘a2 valz)))

Set “data* as input data
al affected simulators

“data* is a dicionary mapping
source eniy IDs 10 destination
eniityIDs with dictionaries

of atributes and values
(“(src_full_io {dest_ful_id

Check f async. requests
are allowed from dest_sid"
to*sre_sid* and raise

exc: Scenarioror

Selfwordsims.

Assert smulator

[dig = selfworld.df_graph

dest_sid = selfsim_id

“assert sm.next_siey
cache_slice = sellworld._df_cachel

data =

missing = collections.defautdit(lar
eltworld df_graph
dest_sid = selfsm_id

dig

Simlast_step

{sim last_step]

mbda: collections.defaultdict(ist)

data from cache

for full_id, atr_names
inatrs.fems()

Check i async_requests

are enabled.

(FULL_ID_SEP, 1)

ul_id spli(FUI
self_assert_async_requ
inpufs = sims[sid]input_t

LL_ID_SEP. 1)
resis(cig, sid, dest_sid)
buffer setdefaul(eid,)

sell_assert_async_requests(dlg, sid, dest_sid)
datafful] =

nputs setdefaulatr,
Disre_full_id] = val

for eid, vals in
dep_dataitems()

Mayb
0 update

he dit in that case

' already an entry for fllid, S0

Gata setdefault(FULL_ID %
(sid. &),
) update(vals)

fexcep

Deciioninput»

Gatalfll_d)fate]

missinglsideic]
append(att

src' sre_sid,
‘dest: dest_sid, |

)

“«Decisioninput

«

9% data)

Decisioninput>

digfsre_sidlidest_sid]lasyne_requesis’ is not True

aise ScenarioErtor(No
connection from “Se(src)s
96(dest)s": You need
10" connect entiies

from both simulators and
set"async_requests=True'

Taise ScenarioEmor(‘Async.

requests not enabled for
connection from

(ro)s” t0 “Se(desi)s”
Add the argument
‘asyne_requests=True" to
the connection of enties
from ' Sp(sre)s” to
96(dest)s" 9 data)

dest_sid not in diglsrc_sid]

_static/UML/activity/scheduler.py.dot.png
wait_for_dependencics
(scheduler. py: 146)

sim_process
(scheduler. py:47)

t_sleep
(scheduler. py:305)

get_input_data

step_required
(scheduler.py:187)

get_keep_running_func
(scheduler.py:113)

(scheduler.py:85)

keep_running
(scheduler.py:107)

check_time
(scheduler.py:93)

step
(scheduler. py:223)

1t_check
(scheduler.py:314)

get_outputs
(scheduler. py:244)

schedule_events
(scheduler. py:341)

get_progress
(scheduler.py:298)

activate_new_event
(scheduler. py:329)

_static/UML/activity/exceptions.dot.png
H

?

This module provides
mosalk specifc exception
ypes

?

!

Class ScenarioError
(Exception)

(e masonere
(Exception)

|(def _init_(self,
msg exc=None)

®

This exception s raised
mething fas during
reationg of a

"This exception s raised
ifa simulator cannot be
started or if a problem
arises during the executio
of a simulation.

A A

(0

«Decisioninput
exc

Decisioninput
orig.endswih(’)

arg +=msg
super(._init_(arg)

_static/UML/activity/mosaik.py.dot.png
(simmanager.py:40)

validate_api_version
(simmanager. py:277)

start_connect
(simmanager.py:187)

start_proc
(simmanager.py:147)

e
(simmanager.py:211) i o ST EEEees ST ITTT T memee— e _____
1 . S -7 7" I - o o - - T T T T T e
T g7 S S il Sae scenario I T -l T -
A a0 pi IR | e
terminate start_inproc v @ ! 0 | sync_call connect_randomly connect_many_to_one World ! -- Tl
(simmanager. py:264) (simmanager. py:226) (simmanager.py:108) - | o (util.py:47) (util.py:82) (utiL.py:71) - (scenario.py:37) S . | -~ Tee-a
0 o - . S N
N 2= - TeEea ! ! ~ Te- L e
- \ til.syre_call S . P scenario. ,) o \\
RemoteProcess LocalProcess sync_process proc _connect_evenly _connect_randomly _init__ connect get_data start set_event . h \ !
(simmanager. py:407) (simmanager. py:373) S (util.py:13) (util.py:58) (util.py:128) (util.py:144) 2 (scenario.py:65) (scenario.py:130) (scenario.py:196) (scenario.py:117) (scenario.py:181) — - ; |
B ~——_ \ e i
- - g - \ I 7 T AR i
- = , - — = h - . 7 L o DRER !
_ -7 simmanagerRemotcProcess - b S R N scenario.World.get_data Z scheduler mmoemoomEEETC L !
SimProxy _get_proxy stop _init__ _get_proxy init, shutdown _check_attributes ModelFactory —c run - wait_for_dependencies N[| disable enable | |
(simmanager.py:301) (simmanager.py:437) (simmanager.py:417) (simmanager.py:409) (simmanager.py:396) (simmanagerpy375) Am— (scenario.py:287) (scenario.py:296) (scenario.py:315) (scheduler.py:14) (scheduler. py: 146) (_debug.py:30) (_debug.py:16) '
— | !
. T . i
~|- - I = _ —— — _ﬁ.—_ﬁ . |
j Ceptions _ il So simmanager, S1fProxy ~ o Temmcemaa -enario.ModelFactory ' |
" S N !
" T / \
ScenarioError SimulationError I stop _init__ MosaikRemote __getattr__ sim_process o
(exceptions.py:7) (exceptions.py:14) " (simmanager. py:342) (simmanager. py:308) o S (simmanager. py:442) e S (scenario.py:326) (scenario.py:350) (scheduler.py:47) L
' N , o Rl T -
= — - — — = ‘ [
= = - e T T Y T N e e e '
exceptions. SimulationError, ' - _— e simmanager.MosaikRemote ~< R \ scenario.ModelFactory. _init__ ! "
- c ~ S~ \ ! [
! 1
__init__ _get_proxy _check_model_and_meth_names mpe get_data get_related_entities set_data get_blocked_time get_progress. __init__ : ModelMock get_keep_running_func get_outputs step_required get_input_data rt_sleep 1t_check get_progress st post_step pre_step [
(exceptions.py:19) (simmanager. py:350) (simmanager. py:353) (simmanager. py:448) (simmanager. py:523) (simmanager. py:464) (simmanager. py:570) (simmanager.py:591) (simmanager. py:456) (simmanager. py:452) (scenario.py:360) (scheduler.py:85) (scheduler. py:244) (scheduler.py:113) (scheduler.py:187) (scheduler. py:305) (scheduler. py:314) (scheduler. py:298) (scheduler. py:223) (_debug py:75) (_debug.py:36) , S
W) L |
[’ 1
,, B '
- ‘actory.__init__.get_wrapper - - !
e I 4 X '
o ee——————=— =TT ! L — | [— |
B e - - -----------TTTTTT i _i | schedule_events activate_mew_event N _ I———— |
(simmanager. py:606) o (scenario.py:370) ' (scheduler.py:107) (scheduler. py:341) (scheduler. py:329) !
i 3 i
v i
i VN
w |
I
A . create check_time |
[AN (scenario.py:383) (scheduler.py:93) ,

_make_entities
(scenario.py:410)

_check_params
(scenario.py:402)

Entity
(scenario.py:447)

_assert_model_type
(scenario.py:434)

full_id
(scenario.py:470)

(scenario.py:475)

(scenario.py:451)

_static/UML/activity/exceptions.py.dot.png
exceptions

ScenarioError
(exceptions.py:7)

SimulationError
(exceptions.py:14)

exceptions.SimulationError

(exceptions.py:19)

_static/UML/activity/scenario.dot.png
This modle provides e e
for users o reaie imulaion
Scenarios for mosaik, The clss: Word
Holds al necessary dta or the
ics all necessary Y Gt connectiel, e, v A 2 v v Y Y
simulaton and alows e user 1 n
tan simultors. 1 provises & P det _ini_cel, sim_conf ot stansel, sm_name. et pais, Gt get_catatsel, enity_set, PRI el sl undl PR Ger_check_atbutestel P der _ni_Gel, ot get_wrappertam, et wrapperCargs, Ger _omatr_(ser R Ger (el Gl _cal_Gen cefcreate(el. Ger_check_paramsisel, def _make.enifes(e, der_assert model_ypeleel, —— et el sid @propeny ot _o_on ot oo
s gl sy (ona Coond=Nons. oo e e . iy st Etrir y Vo am) ey it el g e) e e ode i) i ey hy. dts s e o v e, e s e s o
lass: Modeodc) va whih the detug=Faise) me_dhfted=Faise, asser_type=None) chidien, sim)
Foniies. The method
meth Worldrung. finaly stars
ihe simiaion
' Connect the arc* enty t e ey, Estabish a caiafow
! e e BT for sach.(1c_atr,dest_att) uple i i parse
' e word okl ldatarequied 0 speciy and S a0 and “dest o have he same name, you you can optionally
! process (meth Sari)) and manages he simator onlypass one o hem asa sigle sing Raisea ve Starthe simaton unl e simulaion
! Insances. You have o provide a - confg" which iexc.~mosalk exceplons ScenarioEror fboh e share the tme Ut i reached. I order (0 perforn This = facade fr siior e e
| A in"attr_pairs* does not exis, or f the connection would ntroduce: Getand retum the values teaFtime simulations, you can set _factor: Check f src* and “dest” e e e exposed as atrbutes of Create *num entiies wih
1 1o st them. See func. mosak simmansgerrt) v acycls I the data-flow (eg. A4 Ba CA A). Il the ‘dest ofal “attibutes* for eac R have the attbutes in T ey ass: ModelFactory” and allow the the speciied “model_params*) v e
formre detle mosai contg, canbe ¢ detor Simaior ke s egUes o sl o Quydta ity oo e The g ke Tserona ek A et o v “au pars Rase 3 S iy oxposin. v v v intaiaionofsimitor models. v andreum a s wi e : v v e Yt} %0 oo™ e,
he s - (1570.0.3, So58) N e config dictionary Start the simulator from src* (or set data o) “async_requesis* should be set to retum value s a dct mapping {sel sims[sid] proxyget_data 0.5 vill e the simulation run twice as fast Shut.down all simulators e ModelFactory” provides a rapper() in order to avoid problems g S e e o Call-meth create() S e e Rty e e Sy ‘An entiy represents 10 ofthe simulator e e, . join(repriseitsia),
trom colections) | “start_tmeout: 2, # seconds ‘stop_timeut: 2, # that tels mosaik how TAMed *Sim_ame* an reum True" 50 hat the *S1c* Smulator stays n sync with ‘dest*. An «Decisioninput» || the eniiies of “eniiy_set: Poappiier 5 et e slaton fun e s s <Decisioninput> s o =l ScenarioEmor f an lodelfactony PIovides 8t 0 e 1o svold problems wih sconng | (“return wisyne_casim,) [implemented i order to class to create exactl one enty Solt_name = o Call-meth:creaie(fstof eniies s the same expected_params = of class: Ently nstance has either type “assert_type* “Decisioninput> A eniy (SprESEs on e e Ful globally uniaue || . joind repr(seitsia), rommteatien
impor detauitdict) | 510 s et el mesa e a lass: ModelFactory alternative to asynchronous requests are time-shifted connections. destsid || todicts containing the values. S g o o tactaryoo Chose. massic e seltsrv_sockis None e e atvibute does not exist. e e / voulde o meth, s, kwargs) improve error messages. sim. Atematvely, || SeiLSm < sin i as returned by lsiselt._params) from alistof ifis not none or eise any assert_type isnotNone || &1 IS@1Ce of 3 st ey belon: entiy id " sid.¢id repr(sel id) Tepr(seltsim. name),
econds e e peors add s e fort Thei data low 3 lways resoved aftr normalconnectons 50 hat . of each alibue n *aibutes” 1actoryou chase, mosaik prins Excepton: f the mela data llycreses the emies. ¥ you youcan 0 s et mosalk_opi Simulatorreate(enty_dcis. vald ype o o ‘ . Teprioelsim name). rame).
mosaik vl ind s socket o, st tmeout and . Y01 n ho data fow can be reaizea without inroducing deadiocks (EniyC): (ot 1 outputs_by.simtems0) by default oy 2 waring, Inorder o aise i T for dest declares sesess an s et o T T etho o create mulle enttes sef_param: T bt he imulair & prepended . . 7 T T Seiyoel) seltype, repiselchidren),
stop_imeout* specifiy a tmeout (in seconds) for o8 e dara fow can be eaized wil g de) a ‘exc RunlimeEor', you can sel *r_stict H - model or ifthe model is not marl H v o crea e entie: sim.meta[models[name][params] i . § H i repr(selt sim)))
“slop_umeaut speciy a tmeout (1 seconds) o ' For such « connection ‘tme. shfec should e set o Trueand \al T a2 val_z e s ot e ' any. nputs e ' Wit Same set o parameers a1 ' o every enify D to make T ' ! !
starisopplog extemal ik ssses.l on : il data should conta dctwith nput cata (o he frst o) o “True". Beors s method rtums & ! 3 e oot ! nce: s ModeIName creaie. ! them globaly unaue, i : ' |
il e created cing the Smuiaton, This may be. { mlaion ste ofthe rceiving simulaiorAn allemaiive o using T Servr Socke. o i method shouid ony b ! Sraiseq o opors SeenaroBe ! =2y | 1 ' ; ;
usefulfo debugging and testing. Note,tha tis | asyne_fequests g realze cyci data-flow s given by the ime._shifed ! called once. | | T | i | ! |
increases the memory consumption and simulation i 3 R o i T i i 1 B | i i i
time | g.Ca A). It must always be used with initial_data specifying 7 i H i i H i | | / ' 1
| adictwith the data sent (o the dest simulator at e fist step / ! | | | i | i H | !
T ! (eg. " src_ata : value}"). / | | | | | | i ! | |
H / T ! | / | | i | H i / { |
| v i s ! ! | | i | 1 ! / ! |
Import tertools ! Counter = self_sim_ids[sim_name] | g | | | | | | ! | |
e mosalk mport simmanager e e e : : v v v Sl SR PSP et el e pram) v pry T pr— :
{fom mosalk import schecur Saonty Sim simmanagertan(sel, sim,_name, Sm Decsioninpu> forsimin Decioniopu> S metafmodelsetypl for n entes] Create a Modeock Tor rapper_name_= meth moder Decsioninpu> Sai_check_params(model_params) calel_dm, sof_namel. model Decsioninpu> S el sy 1d N o U FULL 1D %
{fom mosaik import Seconcs coase <l smsisim - s async_requests and ime_shited setsmavaiies() || selay sock i nt None Faise,emetal 1l any.inpus’] every publec model etn wiapper <o metagmodels] || name in modes and no modelsinamel{pubic] Vet s roe(, modsl paramoo)_) | £5%rtfn(enies) = num. v enes wee equested it et creaied 9 (um. || for param i model aras || para o expecied.params enty graph = el word enty_oraph S, o seteid=eid J| e iy 0 {selsic seffews)
enity & 7

from mosalk exceptions import ScenarioError, self.di_graph-add_node(sim_id)
Simulation€rror / Self shfed_graph-add_node(sim_ic) return sell._make_eniies(enites, assert_type=self_name)

backend = smmanagerbackend retum ModelFactory(sell, sim)

(End for]

v =] Ssserterye] ZasertType] v
base_config = { addr (127.0.0.1', 5555), star_tmeou: 10, e config dictionary Expand single atiibutes | (Taise ScenarioError{Cannot B raise RuntimeError(Simulation o Tor model props n assert_type. (Entty Self._sim.metafmodels], £
‘Sop-imeout: 10,} et : orgeneralmosaik || <Decisoninput a0 ot air) |(connectonies sharing forenty nentty_set. fexcep) | <Decisonipun | - (resuls Has aleady been run and Check o for at_par “Decsonnpuns | 1oy model props for e in entiy_dits %s" s the wiong ype: || (Type "%s”of ety (‘setsim_name = sm_name) 7700
FULLLID = Simmanager FULL_1D Setings. mosaik_confi upes: e same. simuator - comeenoreroraso | ©{ sefenval oitequesis) | canony e e e naw pairs propslpubic] fems) - s s equied % || s ot ound i imte - N simulatorname.
assert_type)) e[eid]) -

(Endfor] End o]

A 4

“Decisioninput> | (" Self_asser_model_ype(assert_type, &)
children chidren = e get(chidrer, [)

aise AtributeError(Model
factory for "%s” has no
vodel and no' function
965" 96 (self._sim.sid,
name)

Taise ScenarioErTor(Async_requests
and tme_shifted connections
“are incangruous methods
for handiing of cyclic”
‘data-flow. Choose oner)

Taise TypeEror('create()
ot an unexpected keyword
argument” "o6s" %6
param)

Taise AtributeError(Model
*945" is not public. 96
name)

or sid, degin
sorted(list(networkx.degree
(selia_graph)

“The entity’s

att_pairs = tple((a, a) I type(a) is st else a forain
type (o class).

att_pairs)
missing_airs

Bind exra_methods,
o this instance:

“Deciioninputs

yion retur eniy_set

Decisioninput
missing_ats

enduy

self sn_sock = None: enumerateattr_pair) | ot (any_inputs[] or atrin emetafiatrs?)

®

ot by st ") (Tomut. i = ke rocsss s don. o0)

Setn._sock cose0) fori, i Dot
ety eid] = atnibutes resuls =) l""‘(j (

elf_check atributes(src, dest, atr_pairs)

Sellchidren = children
it chidren is not None
else sel)

sg = (Simulator s’
closed its connection while
executing”

“World get_data()")

for meth in
selfmeta
[extra_methods]

Setat(sell, model,
ModelMock(selt. world,
model, sel._sim))

An enty sef containing
subordinate enties.

self.config.update.

(mosaik_config) simulation:))| enable when requested

prini(Starting J aways mport

A A

Taise ScenanoErmor(AL

least one attibute does. The class:

Time-shifted conneciions.

Try 0 ind the simulator
b : “Decisioninputs e PHNCWARNING %s has no) (“mport mosaik._debug) [«Decisioninputs atr_errors append((enttes(l, setat(sell, meth, s
ok exist s % ol ime. shifte o dosed s in st (el Connections. 545 as sel,_debu au et wrapper(sm, met End for] mosalksimmanager SmProxy
Join(%s 9659 x for x time_shied fentiy.éi connection i ions. %4 5i0) (s i_debug) get_wiapper(im, mett) Chidren) containing the eniy
in missing_atrs)) > = .
- / Endon
» Ll
satsims =0)| sered Smotiore g Standard connections o req,sidin “Decisioninput> o ((59= requestsrequest et resut.by._sim
- a i Add edge and check for cycles and the data-flow graph. (requess emso | requriggerea anaotreaok Tesats. by smis) —vave) (P
es)
Sell df_graph add_edge(sre s, ; ;
- Seltshited_raph.add_edge(sre s, dest.sic) P —— e —— entity = Entity(sim 10, a{id], sim_name, e{type], children, set_sim)
Sectandmionmentg)| ‘gess -smpyioseect s ~selt shilted_grapis dest i sotdetaul(Gatatons D || e c s nt o it oy faests o et ,_dreclod ey raphset xah) dog.enabled entty_setappendenity)
Environment s appendi(sre.¢id, desteid,at_pairs) Lo - o eavens) _drected acyele. & eniiy_graphadd._node(entiy.fll_id, sim=sim_name, type=eltype’)
Taise RuntimeEror(Could
Sellsn_sock =
Bt s)| LU S & pagemee st smiaer | (e Sl
ol connecton.)
- | ol es) ol ves)
\ Tae ScenaroEror(Time Y
- The drected data-low Shifted connctons have Seltl_graph remove_cdge(srcid, o
e aropt = v | 11 raph <networc Dicraph> tobe " setwith defaul. aise ScenarioEmor(Connection from "¥s” to %s” ntrocuces
25! for his Scenari inputs for the frst ‘cyclic dependencies. 86 (src sid, dest sic)
step))
s = s of_graphlsr siddest s setdefault
(datatiows 1)
- dis append{(ec.eid, dest id, atr_pairs)
A second drecte
. a-flow graph for flows P P —
Seltshified_graph = low araphfo o Set detault values Decsoninpu |
networox DiGraph) | (1% 20é st 1y frt data exchange Keyboardinterrupt
dependencies T <
. ! il sync_processischeduerrun(sell, untl, _facto, st ") \
/ i HED \
. | prini(Simulation finished successfully.)
S The func: graph !
<networkx Graph>" of related A 4
Selemiygrpn)| Crles Hodes e (o “Decsoninpit forat, valin
= neworkxGraph)| () IWFES Al B0 at not i check atus | |_intl_data tems()
with an
class” Entty
. End fo]
vy
Progress of the curren “Add refation print(Simuation canceled i
simulation in enty_graph Terminaing ..) faly
|
Decmommoon | ((7aise Scenariorror(incorrect) ("Sell_shited cachel0] setdefaulsrc.sid, 0) Sellenty_graph add_edge g S S :
isoninp o6 n il data'” Sell3hited cachelOlsr. sl setdsfaulire.id, 1) ol 16, | Cache the atiibute names which we need outpu daa for afer : fnaiy]
9 Soat) Selt shited_cache(0lsrc scse.eicatr] = val destulid) e e grepha
Y
outatt = (o] for [<Decisioninputs “Decsonnous |(o smudonmy
ainatr_pairs ouatr selt._debug

‘Contains ID counters for
each simulator type.

watrsre.sid]
[src 2] extend(outatt)

Sell_sm_d
defauitdict
(iertools.count)

Uit of outputs for each simulator and model
{_outatirfsim_idfentty_id] = [atir_1, a2, .}

e for
Simulation results

_images/execution_graph_timeshifted_weak.png
Collector-0 A

ExampleSim2-0 -

ExampleSim-0 -

_images/execution_time_simulator.png
Execution time [s]

Execution time

0.005 -

0.004 -

0.003 -

0.002 -

0.001 -

0.000 -

— ExampleSim2-0
— ExampleSim-0
—— Collector-0

2 3 4 5 6 7
Simulation time [steps of the simulator]

_images/executiontime.png
Collector-0 -

ExampleSim2-0

ExampleSim-0

0.000 0.005 0.010 0.015 0.020
Simulation time [s]

_images/execution_graph_timeshifted_weak_sliced.png
Collector-0 -

ExampleSim2-0 -

ExampleSim-0 -

)

_images/execution_graph_weak.png
ExampleSim-0 -

0000000000

_images/favicon.png

_static/UML/activity/_version.dot.png
This module provides
convenient access o the:

version_info = (2. 4,0)

version = join(map(str.
version_info)

_static/UML/activity/_version.py.dot.png

_static/UML/activity/elementKey.png
.

Decision

<Decisioninputs
x<10

Wuliway selecton|

v
Select Case x|

Fori=1To 10

Statement {

!

!

[Comei

s @)

[Excopion handing]

v

|
#DEBUG hen
'

L]

¢

fEnd For
&\b L
atement 2

)

¢

o)

<Decisioninputs
WyExcaption

®

_static/UML/activity/__init__.dot.png
*

This module provides
nvenient access (o all
classes and functions
required [0 create scenarios
and run simulations.
Currenty, ths is only

class- mosak.scenario
World

from mosak.scenario
import World

rom mosaik import_version
__version_=_version version
all__=[Woild]

_static/UML/activity/_debug.dot.png
1o actvate some debugging v
functonaly hat makes et wapped_step(word,) o pre_stepwori, oo
mosak collect more data (“'*”“"90 s, inpute) detasabie) | [ey def post_siep(world, sim)
en the simulaion s
being executed l
1 Add a node for e

current step and edges.
from all dependencies to

Wrap func:”

pre_step(world, s, inputs)

Tomtme o) | o5t sen (RS o emwone, s inpusy || e e | e Record e

retum et

execution,

. perform some checks and
H annotate the graph with
the datafiows

| rid execuion_graph
. sims = world sims.
5id = sim.sid

worldexecuion_graph

«Decisioninput> X imlast_step
sim.ast_step node = Bes-%s"

node_id = node % (sid, last_step)
. eg.nade(node_id][t_end] = perl_counter()

rom mosalk import scheduler
step schedulerstep, }

Schedulerstep
wrapped_step

Sim.next_step
s

node_id = node % (sid, next_step)
eg.add_node(node_id, t=pert_counter(),

node % (pre, simsipre] last_step)
eg.add_edge(pre_node, node_id)
assert ég nodelpre_node][t] <= eg.node[node_id][1]

o
o
T ——)

The next step of a least one successor must be >= our nex!_step
(hat
We are going 1o execue),

“Decisioninputs
next_steps

es]

Suc_node = node 9 (suc, sims[suc) last_step)
ol eg.add_edge(suc_node, node_id)
assert Smsfsuc) fext_siep >= next_step

assert max(next_sieps) >=
next_step, (“next_step

of all successors of
is < 8s' % (sid,
next_step)

_static/UML/activity/__init__.py.dot.png

_static/UML/activity/_debug.py.dot.png
_~ Zdebug

disable
(_debug.py:30)

enable
(_debug.py:16)

pre_step post_step
(_debug.py:36) (_debug.py:75)

_images/demo_4.png
MOSAIK 3.0 - External Events X

Click me to set an external event!

_images/hwt_schematic.png
DHW_out

htc_walls

>

SH_out

—

yers

HP_out

Layer3 . .
Tesmeas - 'Thtc_la
Layer 2 T
Layer 1 -
Layer O

_images/metrics_3.png
@ | o superset x

©0 superset x| +

~ 506 ¢

« > C O D localhost:8088/explore/2form_data_key=GPuJO90ISVETMhRSE JvcKeL6BGp1D11UmNSIssqj6_ajsviBumAvnhv4-6Cjmjvadatasource_id=31&datasource_type=table

OO Superset Dashboards Charts Datasets SQL -

Example

Chart Source =
:::] test_muiti_21.Example H
Metrics ~

Jfiv) COUNT() B

Columns ~

@ time

atc src_sim
st src_entity
vadegree
Pgen

pomw

vmpu

amuar

T 90%

g

o a 8=

4+ Settings +

Bswe -]

oaTA @ cusTomize
Required control values have been removed

L UNECHART il B 4k B

Select values in highiighted field(s) in the control panel. Then run the query by clicking on the “Update chart" button.

View al charts.

seros (CTEIRDD
-0~ ave(g_mvan) () ()

Query®
AVG(va_degree) &'
xAXS
*x O time
CUSTOM sQL
TIME GRAIN
Second COLUMN
METRICS O, # va_degree
L
. AGGREGATE
+0 ‘ | °
conTRia
AVG v
None
COUNT
FiTERS
* time (No COUNT_DISTINCT
.
> MAX
SERIES LMIT
MIN
SUM
soRTEY
L
Row LMIT
1000

TRUNCATE METRIC

SHOW EMPTY COLUMNS
UPDATE CHART

Run a query to display results

_static/minus.png

_static/UML/package/packages_mosaik_simpy.dot.png
mosaik.exceptions

7

o\

mosaik.scenario

mosaik.util

mosaik

simpy.io.dispatcher

simpy.io.access

simpy.io.codec

simpy.io.packet

simpy.io.network

simpy.events

simpy._compat

simpy.resources

simpy.core

N7

7

simpy.io.broker

simpy.io.message

/7

simpy.io.http

mosaik. _debug

mosaik.simmanager

/

mosaik.scheduler

mosaik._version

simpy.util

simpy.io.json

7R

A

simpy.io._compat

simpy.io.platform

e

simpy.io

simpy.io.websocket

simpy.resources.store

simpy.resources.resource

simpy.resources.container

simpy.t

simpy

/

simpy.io.virtual

simpy.resources.base

simpy.io.base

i

simpy.io.poll

simpy.io.async

simpy.io.select

_static/UML/package/packages_simpy.dot.png
simpy.events

simpy.resources

simpy.io._compat

simpy.io.platform

e

simpy.io.access | | simpy.io.dispatcher | | simpy.io.codec simpy.io.packet simpy.io-network |¢
simpy.io.broker simpy.io.message simpy.io simpy.io.websocket | | simpy.resources.base simpy.rt

e

simpy.io.http

simpy.io.json

simpy.resources.resource

simpy.resources.container

simpy.resources.store

simpy.io.base

/

simpy

i

simpy.io.virtual

simpy.util

i

simpy.io.poll | | simpy.io.async | | simpy.io.select

_static/mosaik-api-sequence-get_data.png
loop) create()
......... entites
loop get_data() ,
oo Gata
oop step()
...... time_next step ______
loop get_data()
oo Gata

_static/dia/ov-mosaik.png
gen |, . .| gen API

I 1 I

simpy io e le—>| simpy io

proxy

mosaik Python-Simulator

_static/graphs/execution_graph_timeshifted_weak.png
Collector-0 A

ExampleSim2-0 -

ExampleSim-0 -

_static/graphs/dataflowGraph_timeshifted_weak.png
';)Ilector-o

.<ampIeSim-0
)
L)

.<ampIeSim2-0

_static/file.png

_static/UML/package/packages_mosaik.dot.png
mosaik.exceptions

VAN

mosaik.scenario mosaik.util
mosaik
mosaik._debug | | mosaik.simmanager

7

mosaik.scheduler mosaik._version

_static/favicon.png

_static/gitflow-hotfix-branch-diagram.jpg
| Gitflow Workflow Diagram

Master O——)O———)O Master

e

S
o)

i AT
O——0—-0——0 [==)

_images/heatpump_1.png
Poy = Pepyer * (D1 * Tin + P2 * Tour + P3 + Pa* Tamp)

Equation 1: Fit equation for electric power

COP =py * Ty + P2 * Toue + D3+ Pa* Tamp

Equation 2: Fit equation for COP

_images/heatpump_2.png
coolant cycle closer <7

compressor

D

QO

consumer cycle closer

a—
=]
—
[< | condenser
]
—
o<}

expansion valve

-

—O— source ambient

drum with
evaporator

sink ambient

_images/mosaik_logo_simple.png
.:mosaik

_images/mosaik_logo_icon.png

_static/UML/activity/util.py.dot.png
connect_randomly
(util py:82)

connect_many_to_one
(utiL.py:71)

sync_call
(util.py:47)

_connect_evenly
(util.py:128)

_connect_randomly
(util.py:144)

_static/energy_system_development.png
Traditional
Power System

Large Power
Plants

Energy
@ Consumption

New Power System

Decentral Renewable
Energy Generation

!
B é

Traditional Large
Power Plants

B0 E

Weather

between Participants

(E) Communication Systems

Inclusion of Mobility
and Heat Sector

S

Energy Consumption, Storage
and Generation

Simplified illustration of the development of the power

system

_static/UML/class/classes_mosaik.dot.png
simpy.io.network. BaseSocket

address
peer_address

accept()
bind()
close()
connect()
listen()
read()
write()

simpy.io.base. Base TCPSocket

accept : method
address

env
peer_address
read : method
sock : NoneType
write : method

bind()
close()
connect()
connection()
fileno()
listen()
server()

1

[sock

_socket.socket

bind()
close()
connect()
connect_ex()
detach()
fileno()
getpeername()
getsockname()
getsockopt()
gettimeout()
listen()

recv() sock
recy_into()
recvirom()
recvirom_into()
recvmsg()
recvmsg_into()
send()

sendall()
sendmsg()
sendmsg_afalg()
sendto()
setblocking()
setsockopt()
settimeout()
shutdown()

R

‘srv_sock (_df_outattr

mosaik.scenario.World

config : dict
df_graph
entity_graph

env
exccution_graph
sim_config
sim_progress : int
sims : dict

srv_sock : NoneType

connect()
get_data()
run()
shutdown()
start()

¥

[_df_cache [_sim_ids|

simpy.io.select. TCPSocket

collections.defaultdict

default_factory : NoneType

socket.socket

family
type

accept()
close()

detach()

dup()
get_inheritable()
makefile()
sendfile()
set_inheritable()

entity_graph

exccution_graph

networkx.classes.graph. Graph

dict

dict

edge_attr_dict_factory
edge_attr_dict_factory : dict
edges

graph : dict

name

name : str

node
node_dict_factory
node_dict_factory : dict
nodes

root_graph

add_cycle()
add_cdge()
add_edges_from()
add_node()
add_nodes_from ()
add_path()

add_star()
add_weighted_edges_from()
adjacency()

clear()

copy()
edge_subgraph()
fresh_copy()
get_edge_data()
has_edge()
has_node()
is_directed()
is_multigraph()
nbunch_iter()
neighbors()
nodes_with_selfloops()
number_of_edges()
number_of_nodes()
number_of_selfloops()
order()
remove_edge()
remove_edges_from()
remove_node()
remove_nodes_from ()
selfloop_cdges()
size()

subgraph()
to_directed()
to_undirected()

networkx.classes.digraph. DiGraph

adj
adjlist_inner_dict_factory
adjlist_outer_dict_factory
degree
edge_attr_dict_factory
edges

graph : dict

in_degree

in_edges

neighbors
node_dict_factory
out_degree

out_edges

pred

root_graph

suce

add_cdge()
add_edges_from()
add_node()
add_nodes_from ()
clear()

copy()

fresh_copy()
has_predecessor()
has_successor()
is_directed()
is_multigraph()
predecessors()
remove_edge()
remove_edges_from()
remove_node()
remove_nodes_from ()
reverse()

subgraph()
successors()
to_undirected()

t_graph

t_graph

simpy.core. BaseEnvironment

active_process
now

exit()
run()
schedule()
step()

simpy.io.base. BaselOEnvironment

active_process
all_of

any_of

event

fds : NoneType, dict
now

process

start

suspend

timeout

close()
exit()
schedule()
step()

simpy.io.select. Environment

simpy.core.BoundClass

ldf_graph

cls

bind_carly()

kventlall_of \any_of \suspend \ cid

‘mosaik.simmanager.SimProxy

input_buffer : dict
last_step : int
meta

name

next_step : int
proxy

sid

sim_proc : NoneType
step_required : NoneType

simpy.io.access. Accessor

obj

simpy.io.access. Accessor

get_child
name
parent
path

root

Tookup()

stop()

itertools.count

mosaik.simmanager. LocalProcess

mosaik.simmanager.RemoteProcess

stop()

stop()

‘mosaik.scenario.Entity

mosaik.exceptions.ScenarioError

mosaik.exceptions.SimulationError

children
cid

full_id

sid

sim
sim_name
type

[mosaik_remote

mosaik.simmanager.MosaikRemote

‘mosaik.scenario.ModelFactory

mosaik.scenario.ModelMock

meta

sim_id
world

create()

‘get_data()
‘get_progress()
get_related_entities()
set_data()

simpy.io.broker. Accessor

dispatch()
resolve()

mosaik.simmanager.rpc

parent : NoneType

_static/UML/class/classes_mosaik_simpy.dot.png

_static/example-model.png

_static/UML/class/classes_simpy.dot.png
json.decoder.JSONDecoder

memo : dict
object_hook : NoneType
object_pairs_hook : NoneType
parse_array
parse_constant
parse_float : float
parse_int : int
parse_object
parse_string

scan_once

strict : bool

decode()
raw_decode()

/scan_once

decoder

_collections_abe.Container

_collections_abe. Iterable

_collections_abe.Sized

_collections_abe.Collection

_collections_abc.Mapping

get()
items()
keys()
values()

e

simpy.io.broker.RPC

_collections_abc.MutableMapping

env

proxies
router

clear()
pop()
popitem()
setdefault()
update()

socket

close()
configure()
dispatch()
handler()
reply()

simpy.io.codec. AbstractCodec

codec [decode()
encode()

expand_converter_list()
expand_datatype_list()

simpy.io.codec.JSON

converters : tuple
custom_typeid : str
decoder

decoders : tuple
encoder

encoders : dict
inflaters : tuple
types : tuple

decode()
encode()

encoder

Jjson.encoder.JSONEncoder

ensure_ascii

allow_nan : bool
check_circular : bool
default : NoneType

indent : NoneType
item_separator : str proc
item_separator : str
key_separator : str
skipkeys : bool
sort_keys : bool

simpy.io. packet.Packet

env

socket

address
blocksize : int

decode : NoneType
encode : NoneType

max_packet_size : int
peer_address

bind()
close()

listen()
read()
write()

accept()

connect()

simpy.io.virtual TCPSocket

address
backlog : NoneType

env

incoming : NoneType, bytes
max_buffer_size : int

max_segment_size : NoneType, int

outgoing : NoneType, bytes.
peer_address
read : method
write : method

accept()
bind()
close()
connect()
connection()
listen()
server()

] [)

_send_ev

weakref. WeakValueDictionary
simpy.io.http.Message
simpy.io.json.JSON blocksize : int
copy() env
&0 codece —— excess_data
items() converters : tuple simpy.io.http. HTTP :
iterv: in_message_type
itervaluerefs() message e
channel max_header_size : int
keys() remote .
ror0 types ke andler) oo mesage_type
popitem() "
ispatch() sock
setdefault() handler()
update() close()
valuerefs() decommission()
values()
message remote -hannel send_queue _recv_queue
collections.deque
iterable : list
maxlen : int
simpy.io.message. Message
append()
codec : NoneType appendleft()
env simpy.io.http.Client clear()
message_limit : int simpy.io.broker. Proxy simpy.io.http.Service e pp—— copy()
reader count()
socket get() extend()
writer recv() put() extendlefi()
send() index()
close() nsert)
recv) pop()
send
0 popleft()
remove()
reverse()
rotate()
Odec
writer reader

bool

simpy.resources.base.Put

simpy.events.Condition

resource

cancel()

all_events()
any_events()

_recv_ev

simpy.io. packet.PacketUTF8

read_ev\ write_ev

_frame_transmission

simpy.events.Event

defused

env
ok
processed
triggered
value

callbacks : list

defused : bool

fail()
succeed()
trigger()

_incoming_avail/ outgoing_avail / frame_transmission

simpy.io.http.Read

simpy.io.htp.Write

simpy.io. message. InMessage

simpy.io. message. OutMessage

all
data : bytes

default()
encode()
iterencode()

content
id

simpy.events. Process simpy.cvents. Inferruption
T ot Acee | [[simpy.io.baseRead | [simpy.io.base. Write Dy-cvents. L
py.io-base. Accepl callbacks : list
env. amount data
e sock env all = bool
is_alive sock sock
target process
interrupt()
(]
_target [value

simpy.events.ConditionValue

_json.Scanner

simpy.resources.resource. Request

simpy.resources.store. StorePut

simpy.resources.container. ContainerPut

simpy.events. AlOf

simpy.events. AnyOf

events : list

item

amount

simpy.resources.resource. PriorityRequest

key : tuple
preempt : bool
priority : int
time

items()
keys()

todict()
values()

simpy.events. Interrupt

cause

message

content
id
message

simpy.io.http.InMessage

simpy.io.virtual Frame simpy.io.websocket. W SRead

data
sock

simpy.io.websocket. WSWrite

data

socket

simpy.events.Initialize

callbacks : list
env

simpy.io.http.InResponse

parse_startline()

simpy.io.http.InRequest

channel
headers : dict
read : method
respond : method

simpy.io.hitp.OutMessage

data()
parse_header()

channel
headers
statusline
write : method

7

id

path

query : NoneType
respond : method
response

simpy.io.http.OutResponse

code
phrase : str

simpy.io.http. OutRequest
method

response : method

uri

parse_startline()

simpy.resources.base. Get

simpy.events. Timeout

proc
resource

callbacks : list
env

cancel()

_message_id

simpy.io.network. BaseSocket

address
peer_address

accept()
bind()
close()
connect()
listen()
read()
write()

Klog

simpy.core. BaseEnvironment

active_process
now

exit()
run()
schedule()
step()

simpy.io.base. BaselOEnvironment

active_process
all_of

any_of

event

fds : NoneType, dict
now

process

start

suspend

timeout

close()
exit()
schedule()
step()

</

>

\

simpy.core. Environment

active_process
all_of

any_of

event

now

process
timeout

peek()
schedule()
step()

u

simpy.rt.RealtimeEnvironment
simpy.resources.store. StoreGet simpy.resources.container. ContainerGet simpy.resources.resource. Release simpy.io.poll. Environment simpy.io.select. Environment itertools.count simpy.io.async. Environment ‘;"‘;—5'“" int
actor
amount request real_start
strict
'3 step()
sync()
Lpoll
select.epoll
simpy.resources.store. FilterStoreGet Close() simpy.core. EmptySchedule
filter fileno()
modify()
poll()
register()
unregister()

simpy.resources.store. Store

get

items : list

put

gvent

simpy.core.BoundClass

cls

bind_carly()

simpy.resources.store.FilterStore

simpy.resources.base. BaseResource

GetQueue : list
PutQueue : list
capacity

get
get_queue : list
put
put_queue : list

simpy.resources.resource. Resource

count
queue : list
release

request
users : list

simpy.io.base. Base TCPSocket

accept : method
address

env
peer_address
read : method
sock : NoneType
write : method

bind()
close()
connect()
connection()
fileno()
listen()
server()

_socket.socket

bind()
close()
connect()
connect_ex()
detach()
fileno()

getpeername()
getsockname()

simpy.io. poll. TCPSocket

simpy.io.select. TCPSocket

simpy.io.base. BaseSSLSocket

getsockopt()
gettimeout()

listen()

close()

put

get
put

simpy.resources.store. PriorityStore

simpy.resources.container. Container

simpy.resources.resource. PriorityResource

GetQueue : list

get
fevel request | PylQueue
- release

simpy.core.StopSimulation

callback()

request

release

fequest

utQueue

simpy.io.async. SSLSocket

connect()
handshake()

recv()
recy_into()
recvirom()

recvirom_into()
recvmsg()
recvmsg_into()
send()

sendall()
sendmsg()
sendmsg_afalg()
sendto()
setblocking()
setsockopt()
settimeout()
shutdown()

simpy.io.async. TCPSocket

handler

bind()
close()

socket.socket

family
type

handler

simpy.io. poll.SSLSocket

simpy.io.select. SSLSocket

bind()
close()
handshake()

close()

close()

simpy.resources.resource. PreemptiveResource

simpy.resources.resource. SortedQueue

maxlen : NoneType

append()

simpy.io._compat BlockinglOError

andler

simpy.

_compat.ConnectionError

accept()
close()

detach()

dup()
get_inheritable()
makefile()
sendfile()
set_inheritable()

asyncore.dispatcher

accepting : bool
accepting : bool
addr

addr : NoneType.
closing : bool
connected : bool
connected : bool
connecting : bool
connecting : bool
debug : bool
family_and_type
handle_accept
handle_read
handle_write
ignore_log_types
readable

writable

socket : NoneType

tuple

frozenset

accept()

andler

bind()

add_channel()

simpy.io.access. Access

close()
connect()
create_socket()
del_channel()
handle_accept()

handle_close()
handle_connect()

handle_error()
handle_expt()

handle_read()
handle_write()

listen()
log()

log_info()
readable()
recv()

send()
sel_reuse_addr()
sef_socket()
writable()

handle_accepted()

handle_connect_event()

handle_expt_event()
handle_read_event()

handle_write_event()

simpy.io.access. Accessor

obj

simpy.io.access. Accessor

get_child
name
parent
path

root

Tookup()

simpy.io.access. Descriptor

accessor_type
name

simpy.io.broker. Descriptor

simpy.io.dispatcher. Dispatcher

call()
expose()
passthru()
process()

dispatch()
path()

simpy.

_compat.ConnectionResetError

simpy.io.access. Hierarchy

simpy.io.broker. Accessor

simpy.io.broker.Callable Accessor

dispatch()
resolve()

name
parent

simpy.io.dispatcher. HierarchyDispatcher

simpy.io.http.Descriptor

headers()

access
root
root_accessor

simpy.io.dispatcher.StaticDispatcher

simpy.io.http.RPCRequest

routes

dispatch()
path()

dispatch()
path()

connection
headers : dict
message

simpy.io. message. MessageOverflowError

simpy.io.network. AbstractNetwork

simpy.io.network. Protocol

simpy.io.websocket. WebSocketHixic

simpy.io.websocket. WebSocket

fail()
succeed()

connect()
serve()
socket()

configs : dict
elements : tuple
env

simpy.io.network.RemoteException

origin
remote_traceback

blocksize : int
env
peer_address
socket

connection()
server()

compute_accept_key()
configure()

read()

write()

blocksize : int

eny

key_data

location

noise

origin
packet_headerfooter
peer_address

socket

simpy.resources.store. Priorityltem

item
priority

simpy.resources.resource. Preempted

by
resource
usage_since

simpy.resources.store. Priorityltem

configure()
read()
write()

_static/connect_attr_simulator.png
A (event-based) non-persistent non-trigger, B (time-based)

non-persistent trigger, B (hybrid)

i non-trigger :
Solution 2: NG DS sistent BN B (time-based)

Solution 1: FaNGEEISEEE)

_static/UML/activity/simmanager.py.dot.png
(sim

(sim

start_connect

validate_api_version

manager.py:187) (simmanager. py:277)

make_proxy
manager.py:211)

terminate
(simmanager. py:264)

greeter
(simmanager. py:226)

RemoteProcess
(simmanager. py:407)

(simmanager. py:409)

_get_proxy
(simmanager. py:437)

(simmanager. py:417)

SimProxy
(simmanager. py:301)

start_proc

(simmanager.py:147)

start_inproc
(simmanager.py:108)

LocalProcess
(simmanager. py:373)

stop
(simmanager.py:391)

_get_proxy
(simmanager. py:396)

_check_model_and_m

(simmanager. py:353)

eth_names _get_proxy

(simmanager. py:350)

e
(simmanager. py:448)

MosaikRemote
(simmanager. py:442)

_init__
(simmanager. py:452)

set_data
(simmanager. py:570)

simmanager.MosaikRemote

get_data
simmanager.py:523;
\ger-pY:

_assert_async_requests
(simmanager. py:606)

get_related_entities
(simmanager. py:464)

get_progress
(simmanager. py:456)

get_blocked_time
(simmanager.py:591)

_static/demo_3.png
ExampleMasterCtri-0

ExampleCtrl-0

ExampleSim-0

_static/UML/activity/util.dot.png
def connect_randomiy(worid,

el _connect_randomly(worid.

P g e prr— e e v e e
o ot s, crane. o T e ey ek e s
classes. ignore_errors=False) rgs, kwargs ¥ “aturs)

Randomly meth- -mosalk scenario World connect the enties from
s1c_sel” o the enities from “dest_set* and return a subset of
des_set containing al enities wih a connection. “world® is an
instance of the class: ~mosaik scenario.World" o which the entities
belong, “src_Set* and *dest_set* are fterables containing

fass: -mosalk scenaio Entiy” nstances. *src_set* may be empiy,
dest_set must not be empty. Each entiy of Sic_set will be connécted

Synchronously execute a SmPy

process defined by the generator St a Smpy process 10an ey of dest s but ot every ently of ‘destser wil

Gbject -generator A worde 1o make the Hunco> call et enii t se of four oncs). Aget of all entes rom Connet = worldconnect

it s recured o e o 8 Srdsor b ke ol scnaro o connect || LLES 5SS ot Sttt L UAES O comnect Comect = ot comect Commece= 1)

eventloop. You can opiionally itwas synchvonous. Return gt St A each entiy in“stc_set* dest_set.to which aileast e entity flom S1c_set” was conr comected = set) P — assertlen(src_sel) <= enfdest_set)*
ot andom ot g eimacks (aror i resaof e unco" Ve v 0 sar a Simpy process fo ke the create”cl oot 0s e e osa sconais Wik comen() b fod -sveny. 1 st e sz, dest-sze =len(src_se, [“Decsonnput I comects

calloack) which wil be caled call Raise an o v meth ~mosaik scenario et T DL - A lenfdest) pos < s1c; max | = len(dest_sel)- 1

o i o e o ook exeptons T Wotkcomec fo mors 1o T entes coanecios vl be datced s e 13 posso o oo randnt

occurs. If “ignore_errors* is SimulationError” if an details, - e o s connects = {}

setto " Tue 7, no errors wil exception aceurs. four entities to three entities, there will be one 2:1 and two 1:1

be printed. T connections. If “evenly® i set to ~False", connections will be ruy

random. That means ifyou connect thee enies o three entiles,
you may ether have three 1:1 connecions, one 2:1 and two 1:1 connections
or just one 3:1 connection, “max_connecis* lts you st the maximum
number of connections that an entiy of “dest_set* may receive. This
argument s only taken into account f “evenly® i et to

“False’

S B

e ¥ __ N
o Simpyo.netuak mport RemoteExcepton o el forstcinsrc_set dest s = e _sa) || «Decsonipus
o mosaikoxceptons mpon Smiatonitor " " "

Erd for

= randint(0, max_j)
dest = dest_sell]
connect(stc,dest, “atrs)
connected.add(dest)

connects[dest] = connects ge(dest, 0) + 1

«Deciioninput»

“Decisioninput
connects[desi] >= max_connects

fexcepy <Decisioninput>
: (ConnectionEiror, RemoteException, SimulationError) as exc

fexceptl | GonnectionErmor as e

et = yield funciargs, “kwargs) “atrs, async_requests
return ret =async_requests)

(-) func = getattr(sim.proxy, funcname) “) (“world.connect(src, dest,
) ||

Teturn word.envrun(untl
=world.envprocess.
(generaton))

Connected =
_connect._randomly(world,
Src_sel, dest_set, atts,
max_connecis
=max_connects)

“Connected = _connect_evenly(world,
sic_set, dest_set,
“airs)

forsrc, destin
zip(ste_setpos],
dest_sel)

«Decisioninput>
ertback is not None

“Gest_setremove(dest)
max
assert max i

x ‘Simulator s" closed fs connection while executing
[No)| * Bés((5bs, *ésy 96 (sim.sid, funcname, args, kwargs)
raise SimulatonError(err_msg, e) from None

connect(stc, des, “atrs)
connected.add(dest)

“<Decisioninput
ignore_errors

No] retu connected

Decisioninput
type(exc) is RemoteBxception

‘prini(RemoteExcepton:)
| printexc remote_vaceback)
- pri-

prini(Mosaik terminating)
world.shutdown()
sys.exi(y)

_static/demo_4.png
MOSAIK 3.0 - External Events X

Click me to set an external event!

_images/mosaik_logo.png
mosaik
Q)

¥

_images/1-kernel.png
<« Select Another Kernel

Type to choose a kernel source

Python Environments...
Existing Jupyter Server...

_images/2-venv.png
<«

[Felect an environment type \

Conda Creates 3" conds’ Conda environment in the current workspace

_static/tutorials/superset/Metrics.png
@ | oo superset

v Z e ox
« > c
©OSuperset Dastboards Charts Datasets SaL~ Settings -
Example B save B
Chart Source e paa O cusTomize
Required control values have been removed
B testmuti21Example H Select values In highlighted field(s) in the control panel. Then run the query by clicking on the "Update chart” button.
LoUNECHART W W BB 4k B
Search Metrics & Columns View i charts P Y
Metrics. ~ Query) ~ Show 200 v entries
R Jomas time src_sim src_entiy Pgen o @ miar
G e | oot ueoromne
N o LT e e | oo
s : T
Showing 8 of 8 2022-01-01 Grid-0 0-LV11Bus 14
e o e B R —

@ time
atc src_sim

st src_entity

vadegree

Pgen

pomw

vmpu

amiar

My metric &

+ Drop columns/metrics here or cick

DIMENSIONS SIMPLE

SAVED CUSTOM saL

+ Drop columns here or click.

CONTRIBUTION MODE COLUMN

None 8 column(s)

FILTERS

AGGREGATE
% time (Nofiter)

+ Drop columns/metics here o 6 aggregates(s) v

SERIES LIMIT

None

SoRTBY.

+ Drop a column/metric here or click

RO LIMIT
1000 v

TRUNCATE METRIC

SHOW EMPTY COLUMNS
UPDATE CHART

NiA

65255479118 0.001976000000000002

NiA 0,004000000000000002

0001581

2365255479119 0000000000007

0014

0.003000000000000001 0.0011859999999999996.

37000000000000005 0.0011859999999999996.

Run a query to display results

_images/3-python.png
[belect a Python installation to create the virtual environment |

+ Enter interpreter path...

Python 3.11.2 64-bit fust/bin/python3

_static/tutorials/superset/SQL_LAB.png
@ || o superset x|+ M 5 06 &

« - C O D localhost:8088/superset/sqllab/ 0% H
OO Superset Dashboards Charts Datasets SQL = ++ Settings -

i UnitedQuey1 @ X ©

SELECT * FROM "TinescaleDB-6

DATABASE

postaresal Example

ScHemA
test_multi_21 Q
SEE TABLE SCHEWA
BB TimescaleDB-0 o
§ RUN LT 1000 sae | v COPYLINK -
TimescaleDs-o . R e
timell TIMESTAP
src_sim T RESULTS GUERYMISTORY PREVIEW: ‘TIMESCALEDB-0
src_entity o
va_degree |z CREATE CHART DDOWNLOAD TO CSV @ COPY TO CLIPBOARD Filter results
P_gen
pmw SELECT + FROM “TimescaleDs-0° A 1000 ows retumed N
vm_pu The number of rows displayed is limited to 1000
g-mvar by the dropdown.
time src_sim sr_entity va_degree P_gen pmw vm_pu amiar
2022.01-01700:00:00:00:00 Grid-0 OBt 26400173032356426 001 10058930302400066 0005533
2022.01-01700:00:00:00:00 Grid-0 o-wtsus 10 27685769996383076 0005089999889998595 101303317366501 00023710000000000016
2022.01-01700:00:00:00:00 Grid-0 OB T 27306275894195995 0076381 10118s32767313731 0000789939995999959
2022.01-01700:00:00:00:00 Grid-0 OB 1z 27048067095569226 0011099999999999957 1011gs38112267665 0004743000000000001
2022.01-01700:00:00:00:00 Grid-0 OB 13 27004380487877654 ~0021000000000000005 10104833331754254 0000789939995999959
2022.01-01700:00:00:00:00 Grid-0 o-wBus 14 2867086820260403 -00ss32365255478118 1013023010781092 0001876000000000002
2022.01-01700:00:00:00:00 Grid-0 oWz 26586338996451856 0004000000000000002 1008878677840264 oo0tsen
2022.01-01700:00:00:00:00 Grid-0 w3 28535201421647263 -004s32365255478118 10162289004922955 00031620000000000007
2022.01-01700:00:00:00:00 Grid-0 o e 26482154676774123 0 10086415618486577 o
2022.01-01700:00:00:00:00 Grid-0 oS 2868108508074396 001 10104287923215138 0005533
2022.01-01700:00:00:00:00 Grid-0 owBse 2868092464536314 0003000000000000001 10104831276690993 0001185999999999995

_images/4-requirements.png
B | Select dependencies to install

Tsdeaet | (oK)

@ requirements.txt

_static/tutorials/superset/New_Dashboard.png
©0 superset ©0 superset

O D localhost:8088/explore/?form_dat; 9JonsyQy51Lxp3VIa9NpMEKVCROPTRSRKT_GDslvXox-HYcSu&datasourcs

Save chart

Example Dash!

&G0 TO DASHBOARD

_static/tutorials/superset/Dashboard_Full_superset.png
@ o Superset x ‘G’Examplenashhnard x|+ v - & x

« > C \ O D localhost:8088/superset/dashboard/12/2native_filters_key=yuKWR-5f-3csQfVbFkhMNOUg6qH1C0lWz1WMzZFU9FO0AFGDBXVWAr6NONXIAKZW3 E 4 \
OO Superset Dashboards Charts Datasets SQL - +- Settings *
Example Dashboard v ot EDIT DASHBOARD E]
h . . .
Example H Example2 H Example 3 H

-O- MAX(va_degree) -O- AVG(va_degree) -O- MIN(va_degree) -O- AVG(p_mw) 0-11Bus 1 0
5 o oo
- 0-LV11 Bus 11
: sz
-0.003 ouBusTa

B 0-LV11Bus 14 3
: oLz
B -0.006 0-11Bus 3
15" . oL1Bus 4
0008 ouBuss
. ouBus6
: owiBs7
B 0012 0-Vi18us8
05 N 0-LV11Bus 9.
: - o

0 -0.015

2022 04:00 08:00 12:00 16:00 20:00 2022 04:00 08:00 12:00 16:00 20:00 (&'&
K

_static/tutorials/superset/Connect_step_3.png
Connect a database

sTEP3OF 3

Database connected

Create a dataset to begin visualizing your data as a chart or go to SQL
Lab to query your data.

CREATEDATASET ~ QUERY DATAINSQLLAB

SQL Lab

Adjust how this database wil nteract with SQL Lab.

Performance
Adust performance settings of this database,

Security

Add extra connection information.

Other

Additional settings.

_static/tutorials/superset/Default_Chart_Arrow.png
@ | o superset

x| o0 superset

x

+

C

©0 Superset

Dashboards

Chart Source

B testmulti_21Example

Metrics

finy COUNT() B

Columns

@ time
atc src_sim
st src_entity
vadegree
Pgen
pomw
vmpu

amuar

O D localhost:8088/explore/2form_data_key=GPuJO90ISVETMhRSE JvcKeL6BGp1D11UmNSIssqj6_ajsviBumAvnhv4-6Cjmjvadatasource_id=31&datasource_type=table

Charts Datasets

saL -

AGGREGATE

COLUMNS

qmuar

FILTERS

time (Nofiler)

ORDERING.

SERVER PAGINATION

RO LIMIT
1000

UPDATE CHART

View all clf

Show 200 v entries

tme sresm
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610

RESULTS SAMPLES
Q

me

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

sre_entity
oSt
oviBus 10
OB
OB 12
oS3
OB e
oviBus2
oviEuss
0B
oviBuss
ovmBuss
oviBus7
ovnBuss

oLviBuse

Gria-0
Gria-0
Gria-0
Gria-0
Gria-0
Gria-0

Grid-0

sre_entity

oviTBusT
ovitBus 10
ovirBus T
ovitBus 2
oviiBus 13
owviiBus s

0-V11Bus2

va_degree
26490173032356426
27685769996383076
27306275694195995
27848987895569226
27004380497877654
2867086620269493
26588336006461556
28535201421647263
26482154676774123
28681085080749%6
2868092464536314
27815874565317786
2670317553204

2670514174014046.

va_degree
26490173032356426
27685769996383076
27306275604195995
27848987895569226
27004389407877654
2867086520269493

26588338996461856

-@:

P_gen p_mw
oo
0005999999999999995
0076381
0011999999999999997
~0021000000000000005
~004932365255479118
0004000000000000002
~004632365255479119
o

00
0003000000000000001
~0037000000000000005
-0t

0,0040000000000000036

P_gen p_mw
00
0.005999999999929998
0076381
0.011999909909929987
-0021000000000000005
-004932365255479118
0.004000000000000002

3 4 5 . 20 o

% 0 Ty

vm_pu
10058930302400086
101303317366501
“0mEs32767313731
10118538112267665
10104633331754254
“013923819781092
1.008878677840264
1.0162288004922958
1.0086415618486577
10104287923015138
10104831276890993
1.011912853766667
1.008491748992216
10082480922254631

vm_pu
1.0058930302400068

101303317368501
0m8332767313731
“0m18s36112267685
10104633331754254
“013023019781082
1.008878677840264

+- Settings +

Bsme -]
[oo Joo:00:00.2

amvar
0008533
00023710000000000016
0000753999999999999
0004743000000000001
0000753999999999999
0001976000000000002
0001581
0.0031620000000000007
o

0008533
00011859999999999996.
00011859999999999996.
00011859999999999996.
000158099999999999

rows

a_mvar

0005533
0.0023710000000000018
0.000789999999999909
0.004743000000000001
0.000789999999999909
0001876000000000002
000181

_static/tutorials/superset/Default_Chart.png
@ ‘ © Superset X | ©0 Superset x| +

« = C ‘O D localhost:8088/explore/?form_data_key=GPuJO90I9vtTMhRSE JvcKeL6BGp1D11UmNB8Issqj6_aj5sviBumAvnhVaJ-6Cjmjvadatasource_id=31&datasource_type=table X 90% {:{‘

OO Superset Dashboards Charts Datasets SQL -

Add the name of the chart

Chart Source e

B estmuigempe

Search Metrics & Columns
Metrics ~

Showing 1011

Jfin) COUNT() @

Columns ~

Showing 8 of 8

@ time

atc src_sim

st src_entity

* vadegree
* Pgen
* pw
* vmpu

amiar

DATA cusTomzE

el e EHTABLE 4k

View

Query

QUERY MoDE
AGGREGATE | RAW RECORDS

coLuMNs
% @ tme
% e srcsim
% abe src_entty
% % vadegree
% % Pgen
% % pow
x % vmpu
% % amar

+ Drop columns here or click

FILTERS
. time (No fiter)

+ Drop columns/metrics here or cick

ORDERING.

Select

'SERVER PAGINATION

ROW LIMIT
1000

UPDATE CHART

charts.

Show 200 v entries

tme

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

sre_sim
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0

Grid-0

RESULTS SAWPLES

Q searcn

 time

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

sre_entity
oSt
oviBus 10
OB
o2
oS3
OB e
ovBus2
oviEuss
0B
oviBuss
ovmBuss
oviBus7
ovnBuss

oLviBuse

sre_sim
Gria-0
Gria-0
Gria-0
Gria-0
Gria-0
Gria-0

Grid-0

sre_entity
oviTBusT

0B 10
ovirBus T
ovitBus 2
oviiBus 13
owviiBus s

0-V11Bus2

T
T
[osmmong
| eommomang
[oo
[eommmy

va_degree.

va_degree
26490173032356426
27685769996383076
27306275604195995

' =
l ;
o

P.gen pmw wm_pu

o014

.
i

NiA 0.005999999999999938

023710000000000016

NiA

0.000789999999999999

[Te—— oo

NiA -0,021000000000000005 0.000789999999999999

NiA 65255479118 0.001976000000000002

w e oaorsar

NiA 2365255478110 0000000000007

NiA

NiA o014

NiA 0003000000000000001 0.0011859999999999996.

| aore ooonssssssssessasos
wil 00040000000000000038 ooorsanasasasssasse

[

wrows 0

P_gen pmw ‘a_mvar

N oota 10058930302400065 0005533

N 0005999999999999095 101303317365501 00023710000000000016

N 0076381 10118332767315731 0000789998888999599

N 001ig09s9899999997 “om19s38112267665 00047£3000000000001

N -0021000000000000005 10104633331754254 0000789998888998599

N “00ss32385255 478118 1o1e23018781092 0001976000000000002

N 0004000000000000002 1008878677840264 o081

3 4 s 0 >

_static/tutorials/superset/Example_Save.png
©0 superset ©0 superset

O D localhos

Save chart

SAVE 2 GO TO DASHEOARD

_static/tutorials/superset/Example_Fullscreen.png
@ o Superset X ©o Example Dashboard x|+ v - & x

<« > C O D localhost:8088/superset/dashboard/12/2native_filters_key=yuKWR-5f-3csQFVbFkhMNOUg6qH1COlWz1WMZFUSFOOAFGDBXVWAr6NONXIAKZW3 ENRAS o a 8=
Example 3

-O- MAX(va_degree) -O- AVG(va_degree) -O- MIN(va_degree)

25

2022-01-01 09:00
@ MAX(va_degree):
® AVG(va_degree): 1.35
® MIN(va_degree): 1.3

15

05

2022 04:00 08:00 12:00 16:00 20:00

_static/tutorials/superset/Linechart_1.png
.‘ﬂlsnplset X | ©0 Superset x|+ v

« > c [O D localhost:8088/explore/2form_data_key=GPuJOSoISvTMARSEvcKeL6BGp1D11UmNlssaj6_ajsviBumAvnhV4J-6Cmjvadatasource_id=31&datasource_type=table N

OO Superset Dashboards Charts Datasets SQL -

Example B e [

Chart Source. I omao cusTomizE
Required control values have been removed
‘Select values in highiighted field(s) in the control panel. Then run the query by clicking on the “Update chart" button.

B testmuti2iExample
lUNECHART |u |« B 4k &

| search Metrics & Columns | View il charts D e
Metrics ~ Query &) ~ Show 200 v entries
Showing 1011 XAKS O time sre_sim src_entity Pgen pmw amvar
Showing 8of &

N JT— 2022-01-01 G0 018U 13 | 2700438sasr7rese WAl -o021000000000000005 | 101046333317s4254 | | 0000789999999999999

time
. i SR R TRTUTR R T (R —"
vm_pu . B S o S
* amiar SERIES LMIT

RESULTS SAMPLES. ~
None v
SoRTBY

+ Drop a column/metric here or click.

coninr
1000 B

TRUNCATE METRIC

SHOW EMPTY COLUNNS
Runa query to display resuts

Advanced analytics © v

UPDATE CHART

_static/tutorials/superset/Finished_Graph.png
@ | oo superset

x

©0 superset x| +

« > C

©0 Superset Dpashboards

Example
Chart Source

B testmuzisanpe

Metrics

Jfiv) COUNT() B

Columns

@ time
atc src_sim
st src_entity
vadegree
Pgen
pomw
vmpu

amuar

O D localhost:8088/explore/?form_data_key=GPuJO90I9vtTMhRSE JvcKeL6BGp1D11UmNB8Issqj6_ajsviBumAvnhVaJ-6Cjmjvadatasource_id=31&datasource_type=table T 0% W

Charts Datassts SQL~

DATA cusToMIZE

L UNECHART il B 4k B

View al charts

Query ~

X-AXIS

x O time >

TIE GRAIN

Second

vETRICS
% fin AVG(a_degree) >
% fio MAX(va_degree) >
% fin MiNwa_degree) >

+ Drop columns/metrics here or cick

DIMENSIONS

+ Drop columns her

CONTRIBUTION MODE

None

FILTERS
% time (No fiter) >

+ Drop columns/me r click

SERIES LIMIT

SoRTBY

+ Drop a colum 1 click

ROWLIMIT

1000
UPDATE CHART

Settings -

Do [
oo corees CEIEEED

O~ MAX(va_degree) -O- AVG(va_degree) -O- MiN(va_degree) (Al) (i)

N R

25
2
15
1
05
0
2022 0100 0800 12000 1600 2000
RESULTS SAMPLES ~
Q srows
© time. AVG(va_degree) MAX(va_degree) MiN(va_degree)
2022-01-010000:00 2751416865705901 28681085080749%6 26482154676774123
2022-01-010015:00 2751416865705901 28681085080749%6 26482154676774123
2022-01-010030:00 2751416865705901 28681085080749%6 26482154676774123
2022-01-010045:00 2751416865705901 28681085080749%6 26482154676774123
2022-01-0101:00:00 2.4926148579745825 2592660906869061 2.4005045766634976
2022-01-01 011500 2.4926148579745825 2592660906869061 2.4005045766634976
2022.01-0101:3000 2.4926146579745825 2592660906869081 2.4005045766634976

_images/Connect_Step_2.png
Edit database X

POSTGRESQL
Example
BASIC ADVANCED
HOST* @ PORT *
17218.01 5431 <

DATABASE NAME *

postgres
Copy the name of the database you are trying to connect to.
USERNAME *

postgres.

PASSWORD

DISPLAY NAME *
Example
Pick a nickname for how the database will display in Superset.

ADDITIONAL PARAMETERS

Add additional custom parameters

(O sste

e

CLOSE FINISH

nav.xhtml

 Table of Contents

 		
 Welcome to mosaik’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Linux

 		
 Running the demo

 		
 OS X

 		
 Running the demo

 		
 Windows

 		
 Running the demo

 		
 Overview

 		
 What’s mosaik supposed to do?

 		
 A simple example

 		
 Mosaik’s main components

 		
 mosaik ecosystem

 		
 Tutorials

 		
 Integrating a simulation model into the mosaik ecosystem

 		
 The model

 		
 Setup for the API implementation

 		
 Simulator meta data

 		
 The Simulator class

 		
 init()

 		
 create()

 		
 step()

 		
 get_data()

 		
 Making it executable

 		
 Summary

 		
 Creating and running simple simulation scenarios

 		
 Configuration

 		
 The World

 		
 The scenario

 		
 The simulation

 		
 Summary

 		
 Adding a control mechanism to a scenario

 		
 Integrating a control mechanism

 		
 Same-time loops

 		
 Master controller

 		
 Controller

 		
 Scenario

 		
 Set external events

 		
 Requirements

 		
 Set-event controller

 		
 Listener thread

 		
 Graphical user interface

 		
 Scenario

 		
 Connecting mosaik and Odysseus

 		
 Connecting via mosaik protocol handler

 		
 Connecting via ZeroMQ

 		
 Using Odysseus to process, visualize and store simulation data

 		
 Processing

 		
 Visualisation

 		
 Storing

 		
 Integrating a Model in Java

 		
 Getting the Java API

 		
 Creating the model

 		
 Creating the simulator

 		
 Implementing the mosaik API

 		
 Connecting the simulator to mosaik

 		
 Integrating a Model in Java with Generics / Annotations API

 		
 Getting the Java API

 		
 Creating the model

 		
 Creating the simulator

 		
 Connecting the simulator to mosaik

 		
 ParserHelper class

 		
 Use mosaik with Jupyter Notebooks

 		
 Plotting graphs

 		
 Examples

 		
 Dataflow graph

 		
 Execution graph

 		
 Execution time

 		
 Execution time per simulator

 		
 Slicing the graphs

 		
 Using Apache Superset to visualize simulation data

 		
 Getting Started

 		
 Installing a database and collecting data

 		
 Installing Superset

 		
 Connecting Superset with the Mosaik database

 		
 Visualizing Data in Apache Superset

 		
 The mosaik API

 		
 How mosaik communicates with a simulator

 		
 The low-level API

 		
 Example

 		
 API calls

 		
 Asynchronous requests

 		
 The high-level API

 		
 Installation

 		
 Usage

 		
 High-level APIs in other languages

 		
 Java API

 		
 Julia API

 		
 Scenario definition

 		
 The setup

 		
 Starting simulators

 		
 Instantiating simulation models

 		
 Setting initial events

 		
 Connecting entities

 		
 Running the simulation

 		
 How to achieve cyclic data-flows

 		
 Time-shifted connections

 		
 Weak connections

 		
 Asynchronous requests

 		
 How to filter entity sets

 		
 How to create user-defined connection rules

 		
 How to retrieve static data from entities

 		
 How to access topology and data-flow information

 		
 How to destroy a world

 		
 How to do real-time simulations

 		
 How to call extra methods of a simulator

 		
 The simulator manager

 		
 Scheduling and simulation execution

 		
 Time paradigms

 		
 Advancing through time

 		
 Time-based simulators

 		
 Event-based simulators

 		
 Synchronization and data-flows

 		
 How far is a simulator allowed to advance its time?

 		
 How data flows through mosaik

 		
 Cyclic data-flows

 		
 Same-time (algebraic) loops

 		
 Stepping and simulation duration

 		
 Upgrading from mosaik 2 to 3

 		
 Component’s type

 		
 Time resolution

 		
 Max_advance time

 		
 Sticking with mosaik 2

 		
 FAQ

 		
 General questions

 		
 Are there graphical tools for scenario design?

 		
 Is there a mosaik-Wiki?

 		
 Coupling models with mosaik

 		
 Can I use continuous models with mosaik?

 		
 Can I use mosaik only with Python programs?

 		
 Can I use my MATLAB/Simulink models with mosaik? How do I do it?

 		
 The mosaik demo

 		
 I can only see active power values in the web visualization. Does mosaik also support reactive power values with PyPower?

 		
 What are the power grid’s parameters? How are the cables’/lines’ parameters formatted?

 		
 Port 8000 on my local machine is already in use. How can I see the visualisation with WebVis?

 		
 Developer’s Documentation

 		
 Discussion of design decisions

 		
 Circular data-flows

 		
 Same-time loops for control cycles

 		
 Logo and corporate identity

 		
 Normal logo

 		
 Simple logo

 		
 Icon

 		
 Colors

 		
 API Reference

 		
 mosaik — The end-user API

 		
 mosaik.exceptions — mosaik specific error types

 		
 ScenarioError

 		
 SimulationError

 		
 mosaik.scenario — Classes related to the scenario creation

 		
 SimConfig

 		
 PythonModel

 		
 ConnectModel

 		
 CmdModel

 		
 World

 		
 ModelFactory

 		
 ModelMock

 		
 Entity

 		
 mosaik.scheduler — Coordinate and execute simulators

 		
 run

 		
 sim_process

 		
 rt_sleep

 		
 wait_for_dependencies

 		
 get_input_data

 		
 get_max_advance

 		
 step

 		
 rt_check

 		
 get_outputs

 		
 notify_dependencies

 		
 prune_dataflow_cache

 		
 get_progress

 		
 get_avg_progress

 		
 mosaik.simmanager — Management of external processes

 		
 MosaikConfigTotal

 		
 start

 		
 start_inproc

 		
 start_proc

 		
 start_connect

 		
 Port

 		
 SimRunner

 		
 MosaikRemote

 		
 StarterCollection

 		
 TimedInputBuffer

 		
 mosaik.util — Utility classes and functions

 		
 connect_many_to_one

 		
 connect_randomly

 		
 plot_execution_time

 		
 plot_dataflow_graph

 		
 plot_execution_graph

 		
 plot_execution_time_per_simulator

 		
 mosaik.basic_simulators — Basic simulators

 		
 InputSimulator

 		
 OutputSimulator

 		
 About mosaik

 		
 Acknowledgments

 		
 The history of mosaik

 		
 3.3.0 - 2024-01-17

 		
 3.2.0 - 2023-08-31

 		
 3.1.1 - 2023-01-11

 		
 3.1.0 - 2022-11-23

 		
 3.0.2 - 2022-06-01

 		
 3.0.1 - 2022-05-02

 		
 3.0.0 - 2021-06-07

 		
 2.6.1 - 2021-06-04

 		
 Privacy Policies

 		
 Legals

 		
 Datenschutz

 		
 Impressum

 		
 Glossary

_images/Dashboard_Full_superset.png
@ o Superset x ‘G’Examplenashhnard x|+ v - & x

« > C \ O D localhost:8088/superset/dashboard/12/2native_filters_key=yuKWR-5f-3csQfVbFkhMNOUg6qH1C0lWz1WMzZFU9FO0AFGDBXVWAr6NONXIAKZW3 E 4 \
OO Superset Dashboards Charts Datasets SQL - +- Settings *
Example Dashboard v ot EDIT DASHBOARD E]
h . . .
Example H Example2 H Example 3 H

-O- MAX(va_degree) -O- AVG(va_degree) -O- MIN(va_degree) -O- AVG(p_mw) 0-11Bus 1 0
5 o oo
- 0-LV11 Bus 11
: sz
-0.003 ouBusTa

B 0-LV11Bus 14 3
: oLz
B -0.006 0-11Bus 3
15" . oL1Bus 4
0008 ouBuss
. ouBus6
: owiBs7
B 0012 0-Vi18us8
05 N 0-LV11Bus 9.
: - o

0 -0.015

2022 04:00 08:00 12:00 16:00 20:00 2022 04:00 08:00 12:00 16:00 20:00 (&'&
K

_images/Default_Chart.png
@ ‘ © Superset X | ©0 Superset x| +

« = C ‘O D localhost:8088/explore/?form_data_key=GPuJO90I9vtTMhRSE JvcKeL6BGp1D11UmNB8Issqj6_aj5sviBumAvnhVaJ-6Cjmjvadatasource_id=31&datasource_type=table X 90% {:{‘

OO Superset Dashboards Charts Datasets SQL -

Add the name of the chart

Chart Source e

B estmuigempe

Search Metrics & Columns
Metrics ~

Showing 1011

Jfin) COUNT() @

Columns ~

Showing 8 of 8

@ time

atc src_sim

st src_entity

* vadegree
* Pgen
* pw
* vmpu

amiar

DATA cusTomzE

el e EHTABLE 4k

View

Query

QUERY MoDE
AGGREGATE | RAW RECORDS

coLuMNs
% @ tme
% e srcsim
% abe src_entty
% % vadegree
% % Pgen
% % pow
x % vmpu
% % amar

+ Drop columns here or click

FILTERS
. time (No fiter)

+ Drop columns/metrics here or cick

ORDERING.

Select

'SERVER PAGINATION

ROW LIMIT
1000

UPDATE CHART

charts.

Show 200 v entries

tme

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

2022-01-01

sre_sim
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0
Grid-0
Grd-0

Grid-0

RESULTS SAWPLES

Q searcn

 time

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

sre_entity
oSt
oviBus 10
OB
o2
oS3
OB e
ovBus2
oviEuss
0B
oviBuss
ovmBuss
oviBus7
ovnBuss

oLviBuse

sre_sim
Gria-0
Gria-0
Gria-0
Gria-0
Gria-0
Gria-0

Grid-0

sre_entity
oviTBusT

0B 10
ovirBus T
ovitBus 2
oviiBus 13
owviiBus s

0-V11Bus2

T
T
[osmmong
| eommomang
[oo
[eommmy

va_degree.

va_degree
26490173032356426
27685769996383076
27306275604195995

' =
l ;
o

P.gen pmw wm_pu

o014

.
i

NiA 0.005999999999999938

023710000000000016

NiA

0.000789999999999999

[Te—— oo

NiA -0,021000000000000005 0.000789999999999999

NiA 65255479118 0.001976000000000002

w e oaorsar

NiA 2365255478110 0000000000007

NiA

NiA o014

NiA 0003000000000000001 0.0011859999999999996.

| aore ooonssssssssessasos
wil 00040000000000000038 ooorsanasasasssasse

[

wrows 0

P_gen pmw ‘a_mvar

N oota 10058930302400065 0005533

N 0005999999999999095 101303317365501 00023710000000000016

N 0076381 10118332767315731 0000789998888999599

N 001ig09s9899999997 “om19s38112267665 00047£3000000000001

N -0021000000000000005 10104633331754254 0000789998888998599

N “00ss32385255 478118 1o1e23018781092 0001976000000000002

N 0004000000000000002 1008878677840264 o081

3 4 s 0 >

_images/Connect_a_Database.png
Connect a database

Select a database to connect

B B

Or choose from a list of other databases we support:

SUPPORTED DATABASES

@ Wantto add a new database?
Any databases that allow connections via SQL Alchemy URIs
can be added. Learn about how to connect a database
ariver here.

Import database from file

_images/Connect_step_3.png
Connect a database

sTEP3OF 3

Database connected

Create a dataset to begin visualizing your data as a chart or go to SQL
Lab to query your data.

CREATEDATASET ~ QUERY DATAINSQLLAB

SQL Lab

Adjust how this database wil nteract with SQL Lab.

Performance
Adust performance settings of this database,

Security

Add extra connection information.

Other

Additional settings.

_images/Finished_Graph.png
@ | oo superset

x

©0 superset x| +

« > C

©0 Superset Dpashboards

Example
Chart Source

B testmuzisanpe

Metrics

Jfiv) COUNT() B

Columns

@ time
atc src_sim
st src_entity
vadegree
Pgen
pomw
vmpu

amuar

O D localhost:8088/explore/?form_data_key=GPuJO90I9vtTMhRSE JvcKeL6BGp1D11UmNB8Issqj6_ajsviBumAvnhVaJ-6Cjmjvadatasource_id=31&datasource_type=table T 0% W

Charts Datassts SQL~

DATA cusToMIZE

L UNECHART il B 4k B

View al charts

Query ~

X-AXIS

x O time >

TIE GRAIN

Second

vETRICS
% fin AVG(a_degree) >
% fio MAX(va_degree) >
% fin MiNwa_degree) >

+ Drop columns/metrics here or cick

DIMENSIONS

+ Drop columns her

CONTRIBUTION MODE

None

FILTERS
% time (No fiter) >

+ Drop columns/me r click

SERIES LIMIT

SoRTBY

+ Drop a colum 1 click

ROWLIMIT

1000
UPDATE CHART

Settings -

Do [
oo corees CEIEEED

O~ MAX(va_degree) -O- AVG(va_degree) -O- MiN(va_degree) (Al) (i)

N R

25
2
15
1
05
0
2022 0100 0800 12000 1600 2000
RESULTS SAMPLES ~
Q srows
© time. AVG(va_degree) MAX(va_degree) MiN(va_degree)
2022-01-010000:00 2751416865705901 28681085080749%6 26482154676774123
2022-01-010015:00 2751416865705901 28681085080749%6 26482154676774123
2022-01-010030:00 2751416865705901 28681085080749%6 26482154676774123
2022-01-010045:00 2751416865705901 28681085080749%6 26482154676774123
2022-01-0101:00:00 2.4926148579745825 2592660906869061 2.4005045766634976
2022-01-01 011500 2.4926148579745825 2592660906869061 2.4005045766634976
2022.01-0101:3000 2.4926146579745825 2592660906869081 2.4005045766634976

_images/Metrics.png
@ | oo superset

v Z e ox
« > c
©OSuperset Dastboards Charts Datasets SaL~ Settings -
Example B save B
Chart Source e paa O cusTomize
Required control values have been removed
B testmuti21Example H Select values In highlighted field(s) in the control panel. Then run the query by clicking on the "Update chart” button.
LoUNECHART W W BB 4k B
Search Metrics & Columns View i charts P Y
Metrics. ~ Query) ~ Show 200 v entries
R Jomas time src_sim src_entiy Pgen o @ miar
G e | oot ueoromne
N o LT e e | oo
s : T
Showing 8 of 8 2022-01-01 Grid-0 0-LV11Bus 14
e o e B R —

@ time
atc src_sim

st src_entity

vadegree

Pgen

pomw

vmpu

amiar

My metric &

+ Drop columns/metrics here or cick

DIMENSIONS SIMPLE

SAVED CUSTOM saL

+ Drop columns here or click.

CONTRIBUTION MODE COLUMN

None 8 column(s)

FILTERS

AGGREGATE
% time (Nofiter)

+ Drop columns/metics here o 6 aggregates(s) v

SERIES LIMIT

None

SoRTBY.

+ Drop a column/metric here or click

RO LIMIT
1000 v

TRUNCATE METRIC

SHOW EMPTY COLUMNS
UPDATE CHART

NiA

65255479118 0.001976000000000002

NiA 0,004000000000000002

0001581

2365255479119 0000000000007

0014

0.003000000000000001 0.0011859999999999996.

37000000000000005 0.0011859999999999996.

Run a query to display results

_images/Default_Chart_Arrow.png
@ | o superset

x| o0 superset

x

+

C

©0 Superset

Dashboards

Chart Source

B testmulti_21Example

Metrics

finy COUNT() B

Columns

@ time
atc src_sim
st src_entity
vadegree
Pgen
pomw
vmpu

amuar

O D localhost:8088/explore/2form_data_key=GPuJO90ISVETMhRSE JvcKeL6BGp1D11UmNSIssqj6_ajsviBumAvnhv4-6Cjmjvadatasource_id=31&datasource_type=table

Charts Datasets

saL -

AGGREGATE

COLUMNS

qmuar

FILTERS

time (Nofiler)

ORDERING.

SERVER PAGINATION

RO LIMIT
1000

UPDATE CHART

View all clf

Show 200 v entries

tme sresm
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610
2020101 Gid0
2020101 610

RESULTS SAMPLES
Q

me

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

2022-01-0100:00:00

sre_entity
oSt
oviBus 10
OB
OB 12
oS3
OB e
oviBus2
oviEuss
0B
oviBuss
ovmBuss
oviBus7
ovnBuss

oLviBuse

Gria-0
Gria-0
Gria-0
Gria-0
Gria-0
Gria-0

Grid-0

sre_entity

oviTBusT
ovitBus 10
ovirBus T
ovitBus 2
oviiBus 13
owviiBus s

0-V11Bus2

va_degree
26490173032356426
27685769996383076
27306275694195995
27848987895569226
27004380497877654
2867086620269493
26588336006461556
28535201421647263
26482154676774123
28681085080749%6
2868092464536314
27815874565317786
2670317553204

2670514174014046.

va_degree
26490173032356426
27685769996383076
27306275604195995
27848987895569226
27004389407877654
2867086520269493

26588338996461856

-@:

P_gen p_mw
oo
0005999999999999995
0076381
0011999999999999997
~0021000000000000005
~004932365255479118
0004000000000000002
~004632365255479119
o

00
0003000000000000001
~0037000000000000005
-0t

0,0040000000000000036

P_gen p_mw
00
0.005999999999929998
0076381
0.011999909909929987
-0021000000000000005
-004932365255479118
0.004000000000000002

3 4 5 . 20 o

% 0 Ty

vm_pu
10058930302400086
101303317366501
“0mEs32767313731
10118538112267665
10104633331754254
“013923819781092
1.008878677840264
1.0162288004922958
1.0086415618486577
10104287923015138
10104831276890993
1.011912853766667
1.008491748992216
10082480922254631

vm_pu
1.0058930302400068

101303317368501
0m8332767313731
“0m18s36112267685
10104633331754254
“013023019781082
1.008878677840264

+- Settings +

Bsme -]
[oo Joo:00:00.2

amvar
0008533
00023710000000000016
0000753999999999999
0004743000000000001
0000753999999999999
0001976000000000002
0001581
0.0031620000000000007
o

0008533
00011859999999999996.
00011859999999999996.
00011859999999999996.
000158099999999999

rows

a_mvar

0005533
0.0023710000000000018
0.000789999999999909
0.004743000000000001
0.000789999999999909
0001876000000000002
000181

_images/Example_Fullscreen.png
@ o Superset X ©o Example Dashboard x|+ v - & x

<« > C O D localhost:8088/superset/dashboard/12/2native_filters_key=yuKWR-5f-3csQFVbFkhMNOUg6qH1COlWz1WMZFUSFOOAFGDBXVWAr6NONXIAKZW3 ENRAS o a 8=
Example 3

-O- MAX(va_degree) -O- AVG(va_degree) -O- MIN(va_degree)

25

2022-01-01 09:00
@ MAX(va_degree):
® AVG(va_degree): 1.35
® MIN(va_degree): 1.3

15

05

2022 04:00 08:00 12:00 16:00 20:00

_images/New_Dashboard.png
©0 superset ©0 superset

O D localhost:8088/explore/?form_dat; 9JonsyQy51Lxp3VIa9NpMEKVCROPTRSRKT_GDslvXox-HYcSu&datasourcs

Save chart

Example Dash!

&G0 TO DASHBOARD

_static/tutorials/superset/Connect_a_Database.png
Connect a database

Select a database to connect

B B

Or choose from a list of other databases we support:

SUPPORTED DATABASES

@ Wantto add a new database?
Any databases that allow connections via SQL Alchemy URIs
can be added. Learn about how to connect a database
ariver here.

Import database from file

_static/tutorials/superset/Connect_Step_2.png
Edit database X

POSTGRESQL
Example
BASIC ADVANCED
HOST* @ PORT *
17218.01 5431 <

DATABASE NAME *

postgres
Copy the name of the database you are trying to connect to.
USERNAME *

postgres.

PASSWORD

DISPLAY NAME *
Example
Pick a nickname for how the database will display in Superset.

ADDITIONAL PARAMETERS

Add additional custom parameters

(O sste

e

CLOSE FINISH

_images/SQL_LAB.png
@ || o superset x|+ M 5 06 &

« - C O D localhost:8088/superset/sqllab/ 0% H
OO Superset Dashboards Charts Datasets SQL = ++ Settings -

i UnitedQuey1 @ X ©

SELECT * FROM "TinescaleDB-6

DATABASE

postaresal Example

ScHemA
test_multi_21 Q
SEE TABLE SCHEWA
BB TimescaleDB-0 o
§ RUN LT 1000 sae | v COPYLINK -
TimescaleDs-o . R e
timell TIMESTAP
src_sim T RESULTS GUERYMISTORY PREVIEW: ‘TIMESCALEDB-0
src_entity o
va_degree |z CREATE CHART DDOWNLOAD TO CSV @ COPY TO CLIPBOARD Filter results
P_gen
pmw SELECT + FROM “TimescaleDs-0° A 1000 ows retumed N
vm_pu The number of rows displayed is limited to 1000
g-mvar by the dropdown.
time src_sim sr_entity va_degree P_gen pmw vm_pu amiar
2022.01-01700:00:00:00:00 Grid-0 OBt 26400173032356426 001 10058930302400066 0005533
2022.01-01700:00:00:00:00 Grid-0 o-wtsus 10 27685769996383076 0005089999889998595 101303317366501 00023710000000000016
2022.01-01700:00:00:00:00 Grid-0 OB T 27306275894195995 0076381 10118s32767313731 0000789939995999959
2022.01-01700:00:00:00:00 Grid-0 OB 1z 27048067095569226 0011099999999999957 1011gs38112267665 0004743000000000001
2022.01-01700:00:00:00:00 Grid-0 OB 13 27004380487877654 ~0021000000000000005 10104833331754254 0000789939995999959
2022.01-01700:00:00:00:00 Grid-0 o-wBus 14 2867086820260403 -00ss32365255478118 1013023010781092 0001876000000000002
2022.01-01700:00:00:00:00 Grid-0 oWz 26586338996451856 0004000000000000002 1008878677840264 oo0tsen
2022.01-01700:00:00:00:00 Grid-0 w3 28535201421647263 -004s32365255478118 10162289004922955 00031620000000000007
2022.01-01700:00:00:00:00 Grid-0 o e 26482154676774123 0 10086415618486577 o
2022.01-01700:00:00:00:00 Grid-0 oS 2868108508074396 001 10104287923215138 0005533
2022.01-01700:00:00:00:00 Grid-0 owBse 2868092464536314 0003000000000000001 10104831276690993 0001185999999999995

_images/Save_Dataset_2.png
@ | 0 superset

O D localhos

Save or Overwrite Dataset

isting

‘SAVE & EXPLORE

_images/The_Dashboard_superset.png
@ | oo superset X | o0 ExampleDashboard X | +

« > C

OO Superset Dashboards Charts Datasets SQL -

9

raft

Example Dashboard +r

O~ MAX(va_degree) -O- AVG(va_degree) -O- MiN(va_degree) (A) (i)

15

0s

2022 04700 0800 12700 1600 20700

O D localhost:8088/superset/dashboard/12/2native_filters_key=yuKWR-5f-3csQFVbFkhMNOUg6qH1COlWz1WMZFUSFOOAFGDBXVWAr6NONXIAKZW3

_images/Superset_Dashboard_Settings_arrow.png
@ | oo superset x|+

<« C
OO Superset Dzshboaras Charts
Home
v Recents

Viewsd Edtea Created

() New Dashboard

Viewed amonth ago

v Dashboards

Faorte Mine Al

Video Game Sales :

Modified 7 days ago publshed
v Charts

Faorte Mine Al

Current Developers:Is thi... :

Modified 7 days ago

> Saved queries

Datasets SQL +

Unicode Test

Modified 7 days ago

Last Year Income Distribu...

Modified 7 days ago

O D localhost:8088/superset/welcome/

published

Sales Dashboard

Modified 7 days ago

Revenue by Deal Size
Modified 7 days ago

v 56
ENER 3 on 8=
+- Settings~

Security

List Users

CSS Templates

Alerts & Reports

i COVID Vaccine Dashboard H FCC New Coder Survey 2... H Annotatiop
published | Modified 7 days ago published | Modified 7 days ago published Blotie
info
Logout
¥ About
Verson:000-dev
i Publishers With Most Titles i Number of Deals (for eac... :

Modified 7 days ago Modified 7 days ago

_images/Superset_Databases.png
@ || o superset x|+
<« [¢] O D localhost:8088/databaseview/list/?pageindex=0&sortColumn=changed_on_delta_humanized&sortOrder=desc

OO Superset Dashoaras Charts Datasets SQL -

Databases Upload file to database » + DATABASE
EXPOSEIN SOL LA e SEARCH

Database Backend ~ AQE DML = CSVupload = ExposeinSQLlab = Createdby Lastmodified - Actions

PostgresaL postgresql v Superset Admin amonth ago

examples postgresql v amonth ago

12012

_images/advanced_1.png
min . (hout,s - hin)

Ms

pP=

P- power consumption of the compressor; mi,- mass flow in the compressor,
(houts — hin)- enthalpy change in an isentropic compression process, 1, isentropic efficiency of the compressor.

_static/simmanager.png
Sim Manager

SimProxy SimProxy SimProxy

Sim API Sim API Sim API
Simulator Simulator Simulator

_static/scheduler-step-dependencies.png
i+1
(a)

Ttnext(A)

i+1
(b)

_static/scheduler-step.png
tl’\OW tnext

l step validity T

_static/sim_process.png
?
Y

keep
running

wake up
dependencies

}

get input data

Q condition ’ step ’

\Q event "

|:| sync. func ’ t outout ’
get outputs

H:” async. func. +

notify
dependencies

L]

_images/advanced_11.png
Load the precalculated data

Receive the inputs
condenser inlet temperature &
source air temperature

J

Retrieve the saved data — heating
capacity, COP & condenser mass
flowrate - for this operating point

Find the closest source air
temperature & condenser water
temperature from the table

Calculate the power consumption
using the retrieved COP & heating

capacity

Calculate the condenser outlet
temperature from the mass flowrate,
the condenser inlet temperature and

heating capacity

_images/advanced_2.png
Ratio of isentropic efficiency in design

and offdesign cases

w0

Characteristic line "DEFAULT" for parameter "eta s_char"

X x
x
x

os 06 07 oe o3 1o 11

X
Ratio of mass flowrate in design and
offdesign cases

_images/advanced_10.png
Inputs

Design Point Data

Source air Condenser water Source air Condenser water Heat load Compressor
temperature inlet temperature temperature outlet temperature isentropic efficiency
3 32 2 35 29.67 0.65
18 48 20 55 45.1 0.91

_images/advanced_5.png
- COP, real
Nearnot COPideal

where COPral is the real coefficient of performance of the heat pump, and ncarnot is the Carnot efficiency of the
heat pump

_images/advanced_6.png
Tlift =TT

where Tiitt is the temperature lift

_images/advanced_3.png
52

47

42

37

Qh (kw)

cop

20 15 10 5 0 5 10 15 20 25 30 35

Tempyq (*C)

=
Ll = Pe (kw)
T 14 —
- 13
£ 12
1
10
2 35°C1VD s
o 55°CIVD N
Tl e 35°C 2VD
-55°C2VD ’ -
6
B
EZ .
20 15 -10 5 0 5 10 15 20 25 30 35 20 45 10 5 0 5 10 15 20 25 30 35

Tempyq (°C) Tempyq (*C)

_images/advanced_4.png
Tll

COPygeqi = T T,

where Th is the condenser water outlet temperature, T is the source air temperature, and COPideal is the ideal
coefficient of performance of the heat pump

_images/advanced_9.png
Comgpressor Isentropic Efficiency

Source air Condenser outlet temperature {deg. C}
‘temperature

{deg. €} 15 20 25 30 35 20 a5 50 55 60
-20 0.55 0.56 0.56 0.55 0.42 0.45 0.35 - - -
-15 0.54 0.56 0.58 0.58 0.52 0.54 0.48 - - -
-12 0.54 0.56 0.58 0.59 0.56 0.57 0.54 - - -
-10 0.53 0.56 0.58 0.60 0.58 0.59 0.57 0.52 - -
-7 0.51 0.54 0.58 0.60 0.61 0.62 0.61 0.58 0.61 -
2 0.47 0.52 0.56 0.59 0.63 0.64 0.65 0.65 0.67 0.59
2 0.44 0.49 0.53 0.58 0.63 0.65 0.67 0.69 0.69 0.69
7 0.41 0.45 0.50 0.55 0.63 0.64 0.68 0.71 0.77 0.78
10 0.40 0.43 0.48 0.53 0.65 0.63 0.67 0.72 0.77 0.81
12 0.43 0.41 0.46 0.51 0.62 0.62 0.67 0.72 0.80 0.83
15 - 0.41 0.44 0.49 0.59 0.60 0.65 0.71 0.79 0.85
20 - - 0.42 0.45 0.53 0.56 0.62 0.69 0.74 0.86
25 - - - 0.42 0.45 0.52 0.58 0.66 0.68 0.84
30 - - - - 0.37 0.47 0.54 0.61 0.62 0.81
35 - - - - - 0.45 0.49 0.56 0.56 0.77

_images/advanced_7.png
0.45

0.40

035

030

0.25

0.20

Carnot efficiency

0.15

0.10

0.05

0.00

Carnot Efficiency/COP vs. Temperature lift

y =-0.00018x2+0.01589x +0.02528

R?=0.94157)

Carnot efficiency

COP of the heat pump

10

20 30 40
Temperature Lift (deg. C)

50

60

70

coP

_images/advanced_8.png
Heating Capacity (kW) / Power Consumgtion {kw}

Source air ‘Condenser outlet temperature {deg. C}
m(':;':)" 15 20 25 30 35 0 as 50 55 60

-20 158/527 | 158/572 | 158/626 | 158/6.92 | 158/86 158/89 | 158/10.45 - - -

-15 19/5.78 19/6.23 19/6.76 19/74 19/8.65 19/92 19/10.53 - - -

-12 21/6.06 21/6.51 21/7.04 21/7.66 21/87 21/9.37 21/106 - - -

-10 223/621 | 223/667 | 223/719 | 223/78 | 223/875 | 223/946 | 22.3/1063 | 22.3/12.17 - -

-7 2428/6.42 | 24.28/6.88 | 24.28/7.4 24.28/8 | 24.28/8.75 | 24.28/9.58 | 24.28/10.67 24.28/12.07| 24.28/12.9 -

2 27.1/6.55 | 27.1/7.04 | 27.1/755 | 27.1/8.13 | 27.2/875 | 27.1/957 | 27.1/1053 | 27.1/11.72 | 27/12.8 | 27.1/1534
2 29.39/6.57 | 29.39/7.11 | 29.39/7.64 | 2939/82 | 29.67/87 | 29.39/9.56 (29.39/10.44|29.39/11.51| 29.1/12.8 | 29.39/146
7 3325/6.55 | 33.25/7.31 | 33.25/7.91 | 33.25/85 | 325/855 | 33.25/9.83 (33.25/1065|33.25/11.63| 34/12.8 (33.25/14.32
10 38.47/6.66 | 38.47/7.89 | 38.47/8.65 | 38.47/9.33 | 39.43/9.35 | 38.47/10.77(38.47/11.62 | 3847 /12.63| 37.5/13.4 [38.47/1534
12 40.5/591 | 40.5/7.84 | 405/875 | 40.5/9.48 | 40.5/9.4 | 40.5/10.94 | 40.5/11.79 | 40.5/12.77 | 40.5/13.5 | 40.5/1538
15 - 42.4/721 | 42.4/855 | 424/938 | 42.4/94 [424/1086 | 2.4/11.68 | 224/1261 | 42.4/135 | 42.4/15.03
20 - - 45.1/7.54 | 45.1/894 | 451/9.4 | 451/1059 (45.1/11.37 | 45.1/12.23 | 45.1/135 | 45.1/14.36
25 - - - 48/79 48/94 48/1028 | 48/11.09 | 48/11.92 48/136 48/13.85
30 - - - - 51/94 51/9.79 51/10.75 51/116 51/137 51/13.42
35 - - - - - 54/86 54/10.2 54/11.21 | 54/13.75 54/13

_static/scheduler-event-based-2.png

_static/tutorials/superset/x_axis.png
©0 Superset v - a x
« > c
OO Superset dasmooaras Crarts Datasets 0L+ setings -
Example B e [
Chart Source I oA @ cusTomizE
Required control values have been removed
B testmutti21Example H Select values In highlighted field(s) in the control panel. Then run the query by clicking on the "Update chart” button.
UNECHART W W B G
View o chars:

Search Metrics & Columns

Metrics

Showing 1011

Jfin) COUNT() @

Columns

Showing 8 of 8

[}

time.

atc src_sim

st src_entity

3

3

va_degree
Pgen
pmw
vm_pu

amvar

Query

XA OO

SIMPLE CUSTOM SQL

+ Drop a column here g

METRICS ©)
+ Drop column: COLUMN E
DIMENSIONS 8 column(s) E

@© time

None abc src_sim
FrERs abc src_entity
% time (No

+ Drop columns/]

va_degree

SERIES LIMIT # P_gen
None

p_mw
soRTBY

+ Drop a column/metric here or click

RO LIMIT
1000 v

TRUNCATE METRIC

SHOW EMPTY COLUMNS

Advanced analytics © v

UPDATE CHART

P.gen pmw

NiA

o |

NiA

w

NiA

o014

.
i

0.005999999999999995 023710000000000016

0.000789999999999999

0.071999999999999997

o001

-0,021000000000000005 0.000789999999999999

NiA

65255479118 0.001976000000000002

NiA 0,004000000000000002

0001581

2365255479119 0000000000007

0014

0.003000000000000001 0.0011859999999999996.

37000000000000005 0.0011859999999999996.

Run a query to display results

_static/tutorials/superset/Save_dataset.png
@ | 0 superset x|+ v _oa ox

« - C O D localhost:8088/superset/sqllab/ 0% H
OO Superset Dashboards Charts Datasets SQL = ++ Settings -

i UnitedQuey1 @ X ©

DATABASE 400/ SELECT * FROM "TinescaleDs-0"

postaresal Example

ScHemA
test_multi_21 Q
SEE TABLE SCHEWA
BB TimescaleDB-0 o
§ RUN LT 1000 sae | v COPYLINK -
TimescaleDs-o . R e
timell TIMESTAP Save dataset
src_sim T RESULTS GUERYMISTORY PREVIEW: ‘TIMESCALEDB-0
src_entity o
va_degree |z CREATE CHART DDOWNLOAD TO CSV @ COPY TO CLIPBOARD Filter results
P_gen
pmw SELECT + FROM “TimescaleDs-0° A 1000 ows retumed N
vm_pu The number of rows displayed is limited to 1000
g-mvar by the dropdown.
time src_sim sr_entity va_degree P_gen pmw vm_pu amiar
2022.01-01700:00:00:00:00 Grid-0 OBt 26400173032356426 001 10058930302400066 0005533
2022.01-01700:00:00:00:00 Grid-0 o-wtsus 10 27685769996383076 0005089999889998595 101303317366501 00023710000000000016
2022.01-01700:00:00:00:00 Grid-0 OB T 27306275894195995 0076381 10118s32767313731 0000789939995999959
2022.01-01700:00:00:00:00 Grid-0 OB 1z 27048067095569226 0011099999999999957 1011gs38112267665 0004743000000000001
2022.01-01700:00:00:00:00 Grid-0 OB 13 27004380487877654 ~0021000000000000005 10104833331754254 0000789939995999959
2022.01-01700:00:00:00:00 Grid-0 o-wBus 14 2867086820260403 -00ss32365255478118 1013023010781092 0001876000000000002
2022.01-01700:00:00:00:00 Grid-0 oWz 26586338996451856 0004000000000000002 1008878677840264 oo0tsen
2022.01-01700:00:00:00:00 Grid-0 w3 28535201421647263 -004s32365255478118 10162289004922955 00031620000000000007
2022.01-01700:00:00:00:00 Grid-0 o e 26482154676774123 0 10086415618486577 o
2022.01-01700:00:00:00:00 Grid-0 oS 2868108508074396 001 10104287923215138 0005533
2022.01-01700:00:00:00:00 Grid-0 owBse 2868092464536314 0003000000000000001 10104831276690993 0001185999999999995

_static/tutorials/superset/Save_Dataset_2.png
@ | 0 superset

O D localhos

Save or Overwrite Dataset

isting

‘SAVE & EXPLORE

_static/tutorials/superset/Superset_Dashboard_Settings_arrow.png
@ | oo superset x|+

<« C
OO Superset Dzshboaras Charts
Home
v Recents

Viewsd Edtea Created

() New Dashboard

Viewed amonth ago

v Dashboards

Faorte Mine Al

Video Game Sales :

Modified 7 days ago publshed
v Charts

Faorte Mine Al

Current Developers:Is thi... :

Modified 7 days ago

> Saved queries

Datasets SQL +

Unicode Test

Modified 7 days ago

Last Year Income Distribu...

Modified 7 days ago

O D localhost:8088/superset/welcome/

published

Sales Dashboard

Modified 7 days ago

Revenue by Deal Size
Modified 7 days ago

v 56
ENER 3 on 8=
+- Settings~

Security

List Users

CSS Templates

Alerts & Reports

i COVID Vaccine Dashboard H FCC New Coder Survey 2... H Annotatiop
published | Modified 7 days ago published | Modified 7 days ago published Blotie
info
Logout
¥ About
Verson:000-dev
i Publishers With Most Titles i Number of Deals (for eac... :

Modified 7 days ago Modified 7 days ago

_static/tutorials/superset/Superset_Dashboard_Settings.png
8 x

@ | ©0 superset x| + ~ -
« > c O D localhost:8088/superset/welcome/ ENEIR 3 o n 8=
OO Superset Dasnboards Charts Datasets SQL - ++ Ssettings+
Securi
Home v
List Users
v Recents List Roles
Action Log
Viewed Edtes Created
Row Level Security
Data
(2 New Dashboard
Database Connections
Viewed a month ago
Manage
v Dashboards CSS Templates.
Alerts & Reports
Favorte Mne Al + oast o
Annotation Layers
User
Video Game Sales Y i Unicode Test ¥ i SalesDashboard ¥ i COVIDVaccineDashboard 7 i FCCNew CoderSurvey2.. r }
Modified 7 days ago published Modified 7 days ago published Modified 7 days ago published Modified 7 days ago published Modified 7 days ago published Profile
info
v Charts Logout
Favorte Mne Al # About
Verson:000-dev
¥ i Revenue by Deal Size Y i Publishers With Most Titles ¥ i Number of Deals (for eac... 7 }
Modified 7 days ago Modified 7 days ago

¥r i LastYear Income Distribu...
Modified 7 days ago

Current Developers: Is thi...
Modified 7 days ago

Modified 7 days ago

> Saved queries

_static/tutorials/superset/The_Dashboard_superset.png
@ | oo superset X | o0 ExampleDashboard X | +

« > C

OO Superset Dashboards Charts Datasets SQL -

9

raft

Example Dashboard +r

O~ MAX(va_degree) -O- AVG(va_degree) -O- MiN(va_degree) (A) (i)

15

0s

2022 04700 0800 12700 1600 20700

O D localhost:8088/superset/dashboard/12/2native_filters_key=yuKWR-5f-3csQFVbFkhMNOUg6qH1COlWz1WMZFUSFOOAFGDBXVWAr6NONXIAKZW3

_static/tutorials/superset/Superset_Databases.png
@ || o superset x|+
<« [¢] O D localhost:8088/databaseview/list/?pageindex=0&sortColumn=changed_on_delta_humanized&sortOrder=desc

OO Superset Dashoaras Charts Datasets SQL -

Databases Upload file to database » + DATABASE
EXPOSEIN SOL LA e SEARCH

Database Backend ~ AQE DML = CSVupload = ExposeinSQLlab = Createdby Lastmodified - Actions

PostgresaL postgresql v Superset Admin amonth ago

examples postgresql v amonth ago

12012

_static/tutorials/superset/metrics_3.png
@ | o superset x

©0 superset x| +

~ 506 ¢

« > C O D localhost:8088/explore/2form_data_key=GPuJO90ISVETMhRSE JvcKeL6BGp1D11UmNSIssqj6_ajsviBumAvnhv4-6Cjmjvadatasource_id=31&datasource_type=table

OO Superset Dashboards Charts Datasets SQL -

Example

Chart Source =
:::] test_muiti_21.Example H
Metrics ~

Jfiv) COUNT() B

Columns ~

@ time

atc src_sim
st src_entity
vadegree
Pgen

pomw

vmpu

amuar

T 90%

g

o a 8=

4+ Settings +

Bswe -]

oaTA @ cusTomize
Required control values have been removed

L UNECHART il B 4k B

Select values in highiighted field(s) in the control panel. Then run the query by clicking on the “Update chart" button.

View al charts.

seros