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CHAPTER

ONE

QUICKSTART

This guide assumes that you are somewhat proficient with Python and know what pip and virtualenv is. Else, you
should follow the detailed instructions.

Mosaik runs on Linux, OS X and Windows. It requires Python 3.6 or higher. To install everything, you need the
package manager Pip which is bundled with Python 3.6 and above.

We also strongly recommend you to install everything into a virtualenv.

You can then install mosaik with pip:

$ pip install mosaik

This provides you with the mosaik framework. There is also a simple demo scenario which may help you to get started.
Please refer to our detailed instructions for installation.

3
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CHAPTER

TWO

INSTALLATION

This guide contains detailed installation instructions for Linux, OS X and Windows.

It covers the installation of the mosaik framework followed by the instructions to install the demo.

2.1 Linux

This guide is based on (K)ubuntu 18.04 Bionic Beaver, 64bit.

Mosaik and the demo scenario require Python >= 3.6, which should be fine for any recent linux distribution. Note that
we test mosaik only for the most (typically three) recent python versions though.

1. We also need pip, a package manager for Python packages, and virtualenv, which can create isolated Python
environments for different projects:

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python get-pip.py
$ sudo pip install -U virtualenv

2. Now we need to create a virtual environment for mosaik and its dependencies. The common location for venvs
is under ~/.virtualenvs/:

$ virtualenv -p /usr/bin/python3 ~/.virtualenvs/mosaik
$ source ~/.virtualenvs/mosaik/bin/activate

Your command line prompt should now start with “(mosaik)” and roughly look like this:
(mosaik)user@kubuntu:~$.

3. The final step is to install mosaik:

(mosaik)$ pip install mosaik

Mosaik should now be installed successfully.

5
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2.1.1 Running the demo

Mosaik alone is not very useful (because it needs other simulators to perform a simulation), so we also provide a small
demo scenario and some simple simulators as well as a mosaik binding for PYPOWER.

1. PYPOWER requires NumPy and SciPy. We also need to install the revision control tool git. You can use the
packages shipped with Ubuntu. We use apt-get to install NumPy, SciPy, and h5py as well as git. By default,
venvs are isolated from globally installed packages. To make them visible, we also have to recreate the venv and
set the --system-site-packages flag:

$ sudo apt-get install git python3-numpy python3-scipy python3-h5py
$ rm -rf ~/.virtualenvs/mosaik
$ virtualenv -p /usr/bin/python3 --system-site-packages ~/.virtualenvs/mosaik
$ source ~/.virtualenvs/mosaik/bin/activate

2. You can now clone the mosaik-demo repository into a folder where you store all your code and repositories (we’ll
use ~/Code/):

(mosaik)$ mkdir ~/Code
(mosaik)$ git clone https://gitlab.com/mosaik/mosaik-demo.git ~/Code/mosaik-demo

3. Now we only need to install all requirements (mosaik and the simulators) and can finally run the demo:

(mosaik)$ cd ~/Code/mosaik-demo/
(mosaik)$ pip install -r requirements.txt
(mosaik)$ python demo.py

If no errors occur, the last command will start the demo. The web visualisation shows the demo in your browser:
http://localhost:8000. You can click the nodes of the topology graph to show a time series of their values. You
can also drag them around to rearrange them.

You can cancel the simulation by pressing Ctrl-C.

2.2 OS X

This guide is based on OS X 10.11 El Capitan.

1. Mosaik and the demo scenario require Python >= 3.6. OS X only ships with some outdated versions of Python,
so we need to install a recent Python 2 and 3 first. The recommended way of doing this is with the packet manager
homebrew. To install homebrew, we need to open a Terminal and execute the following command:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
→˓install)"

The homebrew installer asks you to install the command line developer tools for “xcode-select”. Install them.
When you are done, go back to the terminal and press Enter so that the installer continues.

If this doesn’t work for you, you’ll find more detailed instructions in the homebrew wiki.

Once the installation is successful, we can install python and python3:

$ brew install python python3

This will also install the Python package manager pip.

2. Next, we need virtualenv which can create isolated Python environments for different projects:

6 Chapter 2. Installation
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$ pip install -U virtualenv

3. Now we need to create a virtual environment for mosaik and its dependencies. The common location for venvs
is under ~/.virtualenvs/:

$ virtualenv -p /usr/local/bin/python3 ~/.virtualenvs/mosaik
$ source ~/.virtualenvs/mosaik/bin/activate

Your command line prompt should now start with “(mosaik)” and roughly look like this:
(mosaik)user@macbook:~$.

4. The final step is to install mosaik:

(mosaik)$ pip install mosaik

Mosaik should now be installed successfully.

2.2.1 Running the demo

Mosaik alone is not very useful (because it needs other simulators to perform a simulation), so we also provide a small
demo scenario and some simple simulators as well as a mosaik binding for PYPOWER.

1. To clone the demo repository, we need to install git. In order to compile NumPy, SciPy and h5py (which are
required by PYPOWER and the database adapter) we also need to install gfortran which is included in gcc. You
should deactivate the venv for this:

(mosaik)$ deactivate
$ brew install git gcc hdf5
$ source ~/.virtualenvs/mosaik/bin/activate

2. For NumPy and SciPy we build binary wheel packages that we can later reuse without re-compiling everything.
We’ll store these wheels in ~/wheelhouse/:

(mosaik)$ pip install wheel
(mosaik)$ pip wheel numpy
(mosaik)$ pip install wheelhouse/numpy-1.10.1-cp35-cp35m-macosx_10_6_intel.macosx_
→˓10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
(mosaik)$ pip wheel scipy
(mosaik)$ pip install wheelhouse/scipy-0.16.0-cp35-cp35m-macosx_10_6_intel.macosx_
→˓10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
(mosaik)$ pip wheel h5py
(mosaik)$ pip install wheelhouse/h5py-2.5.0-cp35-cp35m-macosx_10_6_intel.macosx_10_
→˓9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl

Note: The file names of the wheels (*.whl-files) may change when version-numbers change. Please check the output
of pip install or the directory ~/wheelhouse/ for the exact file names.

2. You can now clone the mosaik-demo repository into a folder where you store all your code and repositories (we’ll
use ~/Code/):

(mosaik)$ mkdir ~/Code
(mosaik)$ git clone https://gitlab.com/mosaik/mosaik-demo.git ~/Code/mosaik-demo

2.2. OS X 7
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3. Now we only need to install all requirements (mosaik and the simulators) and can finally run the demo:

(mosaik)$ cd ~/Code/mosaik-demo/
(mosaik)$ pip install -r requirements.txt
(mosaik)$ python demo.py

If no errors occur, the last command will start the demo. The web visualisation shows the demo in your browser:
http://localhost:8000. You can click the nodes of the topology graph to show a time series of their values. You
can also drag them around to rearrange them.

You can cancel the simulation by pressing Ctrl-C.

2.3 Windows

This guide is based on Windows 10, 64bit.

1. Mosaik and the demo scenario require Python >= 3.6. By default, it will offer you a 32bit installer. You can find
the Windows x86-64 MSI installer here.

1. When the download finished, double-click the installer.

2. Select Install for all users and click Next >.

3. The default installation path is okay. Click Next >.

4. In the Customize Python page, click on the Python node and select Entire feature will be installed on local
hard drive. Make sure that Add python.exe to Path is enabled. Click Next >.

5. When Windows asks you to allow the installation, allow the installation. Wait. Click Finish.

This also install the Python package manager pip.

2. We also need virtualenv which can create isolated Python environments for different projects.

Open a terminal window: Press the Windows key (or click on the start menu) and enter cmd. Press Enter. Your
terminal prompt should look like C:\Users\yourname>. Execute the following command to install virtualenv:

C:\Users\yourname> pip install -U virtualenv

Note: If your Windows account type is Standard User, you need to open the terminal with administarator
privileges (right-click the Terminal icon, then open as Administrator). Make then sure that you are in your user
directory:

C:\Windows\system32> cd \Users\yourname
C:\Users\yourname>

3. Now we need to create a virtual environment for mosaik and its dependencies. The common location for venvs
is under Envs/ in your users directory:

C:\Users\yourname> virtualenv -p C:\Python34\python.exe Envs\mosaik
C:\Users\yourname> Envs\mosaik\Scripts\activate.bat

Your command line prompt should now start with “(mosaik)” and roughly look like this: (mosaik) C:\Users\
yourname>.

4. The final step is to install mosaik:

8 Chapter 2. Installation
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(mosaik) C:\Users\yourname> pip install mosaik

Mosaik should now be installed successfully.

2.3.1 Running the demo

Mosaik alone is not very useful (because it needs other simulators to perform a simulation), so we also provide a small
demo scenario and some simple simulators as well as a mosaik binding for PYPOWER.

1. Download and install git.

Restart the command prompt (as Admin if necessary and make sure you are in the right directory again) and
activate the virtualenv again:

C:\Users\yourname> Envs\mosaik\Scripts\activate.bat

2. Clone the demo repository:

(mosaik)C:\Users\yourname> git clone https://gitlab.com/mosaik/mosaik-demo.git

3. Now we only need to install all requirements (mosaik and the simulators) and can finally run the demo:

(mosaik)C:\Users\yourname> cd mosaik-demo
(mosaik)C:\Users\yourname\mosaik-demo> pip install -r requirements.txt
(mosaik)C:\Users\yourname\mosaik-demo> python demo.py

The web visualisation shows the demo in your browser: http://localhost:8000. You can click the nodes of the
topology graph to show a timeline of their values. You can also drag them around to rearrange them.

You can cancel the simulation by pressing Ctrl-C. More exceptions may be raised. No problem. :-)

2.3. Windows 9
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CHAPTER

THREE

OVERVIEW

This section describes how mosaik works without going into too much detail. After reading this, you should have a
general understanding of what mosaik does and how to proceed in order to implement the mosaik API or to create a
simulation scenario.

3.1 What’s mosaik supposed to do?

Mosaik’s main goal is to use existing simulators in a common context in order to perform a coordinated simulation of
a given (Smart Grid) scenario.

That means that all simulators (or other tools and hardware-in-the-loop) involved in a simulation usually run in their
own process with their own event loop. Mosaik just tries to synchronize these processes and manages the exchange of
data between them.

To allow this, mosaik

1. provides an API for simulators to communicate with mosaik,

2. implements handlers for different kinds of simulator processes,

3. allows the modelling of simulation scenarios involving the different simulators, and

4. schedules the step-wise execution of the different simulators and manages the exchange of data (data-flows)
between them.

Although mosaik is written in Python 3, its simulator API completely language agnostic. It doesn’t matter if your
simulator is written in Python 2, Java, C, matlab or anything else.

3.1.1 A simple example

We have simulators for households (blue icon) and for photovoltaics (green). We’re also gonna use a load flow analysis
tool (grey), and a monitoring and analysis tool (yellow).

11
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First, we have to implement the mosaik API for each of these “simulators”. When we are done with this, we can create
a scenario where we connect the households to nodes in the power grid. Some of the households will also get a PV
module. The monitoring / analysis tool will be connected to the power grid’s transformer node. When we connect all
these entities, we also tell mosaik about the data-flows between them (e.g., active power feed-in from the PV modules
to a grid node).

When we finally start the simulation, mosaik requests the simulators to perform simulation steps and exchanges data
between them according to the data-flows described in the scenario. For our simple example, that would roughly look
like this:

1. The household and PV simulator perform a simulation step for an interval [0, t[.

2. Mosaik gets the values for, e.g., P and Q (active and reactive power) for every household and every PV module.

3. Mosaik sets the values P and Q for every node of the power grid based on the data it collected in step 2. The load
flow simulator performs a simulation step for [0, t[ based on these inputs.

4. Mosaik collects data from the load flow simulator, sends it to the monitoring tool and lets it also perform a
simulation step for [0, t[.

5. Now the whole process is repeated for [t, t+i[ and so forth until the simulation ends.

In this example, all simulators had the same step size t, but this is not necessary. Every simulator can have its one step
size (which may even vary during the simulation). It is also possible that a simulator (e.g., a control strategy) can set
input values (e.g., a schedule) to another simulator (e.g., for “intelligent” consumers).

3.2 Mosaik’s main components

Mosaik consists of four main components that implement the different aspects of a co-simulation framework:

1. The mosaik Sim API defines the communication protocol between simulators and mosaik.

Mosaik uses plain network sockets and JSON encoded messages to communicate with the simulators. We call
this the low-level API. For some programming languages there also exists a high-level API that implements
everything networking related and offers an abstract base class. You then only have to write a subclass and
implement a few methods.

Read more . . .

2. The Scenario API provides a simple API that allows you to create your simulation scenarios in pure Python (yes,
no graphical modelling!).

The scenario API allows you to start simulators and instantiate models from them. This will give you entity sets
(sets of entities). You can then connect the entities with each other in order to establish data-flows between the
simulators.

Mosaik allows you both, connecting one entity at a time as well as connecting whole entity sets with each other.

Read more . . .

3. The Simulator Manager (or shorter, SimManager) is responsible for handling the simulator processes and
communicating with them.

It is able to a) start new simulator processes, b) connect to already running process instances, and c) import a
simulator module and execute it in-process if it’s written in Python 3.

The in-process execution has some benefits: it reduces the amount of memory required (because less processes
need to be started) and it avoids the overhead of (de)serializing and sending messages over the network.

External processes, however, can be executed in parallel which is not possible with in-process simulators.

Read more . . .

12 Chapter 3. Overview
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4. Mosaik’s Scheduler uses the event-discrete simulation library SimPy for the coordinated simulation of a sce-
nario.

Mosaik supports both time-discrete and event-discrete simulations as well as a combination of both paradigms.

Mosaik is able to handle simulators with different step sizes. A simulator may even vary its step size during the
simulation.

Mosaik tracks the dependencies between the simulators and only lets them perform a simulation step if necessary
(e.g., because its data is needed by another simulator). It is also able to let multiple simulators perform their
simulation step in parallel if they don’t depend on each other’s data.

Read more . . .

3.2. Mosaik’s main components 13
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CHAPTER

FOUR

MODULAR DESIGN

Mosaik as a co-simulation tool organizes the data exchange between simulators and coordinates the execution of the
connected simulaters. This part is called mosaik-core.

Fig. 1: Mosaik is a co-simulation library. The components and tools form the mosaik ecosystem.

Mosaik-core without any connected simulators doesn’t do much. This is why we provide some simple and free simula-
tors so that it is possible to start with a working Smart-Grid simulation. These simulators belong to a part of mosaik’s
ecosystem called mosaik-components.

Mosaik is developed following the “lean and mean” principle. That means that we try to keep the software as simple
as possible in order to keep it efficient and easy to maintain. In order to make it easier to set up and run experiments
with mosaik we provide some tools that help building scenarios, connecting simulators or to visualize and analyze the
simulation results. These tools are located in the mosaik-tools-library.

Elements of the mosaik ecosystem:

mosaik-tools

15
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4.1 Odysseus

Odysseus is a framework for in-memory data stream management that is designed for online processing of big data.
Large volumes of data such as continuously occurring events or sensor data can be processed in real time. In combi-
nation with mosaik Odysseus can be used to process, visualise and store the results of mosaik during a simulation.

4.1.1 Process data

Odysseus allows to process data streams with different operators. For instance, the operators SELECT and PROJECT
can be used to filter the data, aggregations for specific periods of time can be calculated and key-value data can be
transformed in relational data and the other way round. Multiple operators are connected with each other, to form
so-called operator-graphs. An example of such a graph is shown below:

The query for this graph can be found in the tutorial.

4.1.2 Visualise data

All data can be visualised in lists, tables or graphs. For more complex visualisation, dashboards can be created and
individually customised:
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4.1.3 Store data

Odysseus also offers connectors to transform data to different formats and databases, which makes it suitable to store
simulation data.

Further information about how to install Odysseus and how to use it with mosaik can be found in the tutorial.
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CHAPTER

FIVE

TUTORIALS

In the basic tutorial you’ll learn how you can integrate simulators and control strategy into the mosaik ecosystem as
well as how you create simulation scenarios and execute them.

In the first part, we’ll implement the Sim API for a simple example simulator. We’ll also create a simulation scenario
in which that simulator will send its data to mosaik-hdf5 which will store it in an HDF5 database.

In the second part, we’ll also integrate a simple control mechanism into mosaik. We’ll then create a scenario in which
that control mechanism controls the example simulator from part one.

The Odysseus tutorial you’ll learn how to connect the data-stream-management-tool Odysseus to mosaik. The second
part shows some examples on how to use Odysseus. This tutorial may also be of some use when you want to connect
any other component via ZeroMQ.

The Java API tutorial shows you how to use the Java API. This API is intended to connect simulators written in Java to
mosaik. You can use the Java-API also as a RCP-Server if you want to run your Java-simulator on a separate machine.

Basic tutorial

5.1 Integrating a simulation model into the mosaik ecosystem

In this section we’ll first implement a simple example simulator. We’ll then implement mosaik’s Sim-API step-by-step.

5.1.1 The model

We want to implement a very simple model with the following behavior:

• val0 = init_val

• vali = vali 1 + delta for i N, i > 0, delta Z

That simply means our model has a value val to which we add some delta (which is a positive or negative integer) at
every simulation step. Our model has the attribute delta (with value 1 by default) which can be changed by control
mechanisms to alter the behavior of the model. And it has the (output) attribute val which is its current value.

Fig. 1: Schematic diagram of our example model. You can change the delta and collect the val as output.
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Here is a possible implementation of that simulation model in Python:

# example_model.py
"""
This module contains a simple example model.

"""

class Model:
"""Simple model that increases its value *val* with some *delta* every
step.

You can optionally set the initial value *init_val*. It defaults to ``0``.

"""
def __init__(self, init_val=0):

self.val = init_val
self.delta = 1

def step(self):
"""Perform a simulation step by adding *delta* to *val*."""
self.val += self.delta

5.1.2 Setup for the API implementation

So lets start implementing mosaik’s Sim-API for this model. We can use the Python high-level API for this. This
package eases our workload, because it already implements everything necessary for communicating with mosaik. It
provides an abstract base class which we can sub-class. So we only need to implement four methods and we are done.

If you already installed mosaik and the demo, you already have this package installed in your mosaik virtualenv.

We start by creating a new simulator_mosaik.py and import the module containing the mosaik API as well as our
model:

# simulator_mosaik.py
"""
Mosaik interface for the example simulator.

"""
import mosaik_api

import example_model
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5.1.3 Simulator meta data

Next, we prepare the meta data dictionary that tells mosaik which time paradigm it follows (time-based, event-based, or
hybrid), which models our simulator implements and which parameters and attributes it has. Since this data is usually
constant, we define this at module level (which improves readability):

META = {
'type': 'time-based',
'models': {

'ExampleModel': {
'public': True,
'params': ['init_val'],
'attrs': ['delta', 'val'],

},
},

}

In this case we create a time-based simulator. We added our “ExampleModel” model with the parameter init_val and
the attributes delta and val. At this point we don’t care if they are inputs or outputs. We just list everything we can
read or write. The public flag should usually be True. You can read more about it in the Sim API docs. From this
information, mosaik deduces that our model could be used in the following way:

# Model name and "params" are used for constructing instances:
model = ExampleModel(init_val=42)
# "attrs" are normal attributes:
print(model.val)
print(model.delta)

5.1.4 The Simulator class

The package mosaik_api defines a base class Simulator for which we now need to write a sub-class:

class ExampleSim(mosaik_api.Simulator):
def __init__(self):

super().__init__(META)
self.eid_prefix = 'Model_'
self.entities = {} # Maps EIDs to model instances/entities

In our simulator’s __init__() method (the constructor) we need to call Simulator.__init__() and pass the meta
data dictionary to it. Simulator.__init__() will add some more information to the meta data and set it as self.
meta to our instance.

We also set a prefix for our entity IDs and prepare a dictionary which will hold some information about the entities that
we gonna create.

We can now start to implement the four API calls init, create, step and get_data:
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5.1.5 init()

This method will be called exactly once while the simulator is being started via World.start(). It is used for ad-
ditional initialization tasks (e.g., it can handle parameters that you pass to a simulator in your scenario definition). It
must return the meta data dictionary self.meta:

def init(self, sid, time_resolution, eid_prefix=None):
if float(time_resolution) != 1.:

raise ValueError('ExampleSim only supports time_resolution=1., but'
' %s was set.' % time_resolution)

if eid_prefix is not None:
self.eid_prefix = eid_prefix

return self.meta

The first argument is the ID that mosaik gave to that simulator instance. The second argument is the time resolution of
the scenario. In this example only the default value of 1. (second per integer time step) is supported. If you set another
value in the scenario, the simulator would throw an error and stop.

In addition to that, you can define further (optional) parameters which you can later set in your scenario. In this case,
we can optionally overwrite the eid_prefix that we defined in __init__().

5.1.6 create()

create() is called in order to initialize a number of simulation model instances (entities) within that simulator. It
must return a list with some information about each entity created:

def create(self, num, model, init_val):
next_eid = len(self.entities)
entities = []

for i in range(next_eid, next_eid + num):
model_instance = example_model.Model(init_val)
eid = '%s%d' % (self.eid_prefix, i)
self.entities[eid] = model_instance
entities.append({'eid': eid, 'type': model})

return entities

The first two parameters tell mosaik how many instances of which model you want to create. As in init(), you can
specify additional parameters for your model. They must also appear in the params list in the simulator meta data or
mosaik will reject them. In this case, we allow setting the initial value init_val for the model instances.

For each entity, we create a new entity ID1 and a model instance. We also create a mapping (self.entities) from the
entity ID to our model. For each entity we create we also add a dictionary containing its ID and type to the entities list
which is returned to mosaik. In this example, it has num entries for the model model, but it may get more complicated
if you have, e.g., hierarchical models.

1 Although entity IDs can be plain integers, it is advisable to use something more meaningful to ease debugging and analysis.
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5.1.7 step()

The step() method tells your simulator to perform a simulation step. It receives its current simulation time, a dictio-
nary with input values from other simulators (if there are any), and the time until the simulator can safely advance its
internal time without creating a causality error. For time-based simulators (as in our example) it can be safely ignored
(it is equal to the end of the simulation then). The method returns to mosaik the time at which it wants to do its next
step. For event-based and hybrid simulators a next (self-)step is optional. If there is no next self-step, the return value
is None/null.

def step(self, time, inputs, max_advance):
# Check for new delta and do step for each model instance:
for eid, model_instance in self.entities.items():

if eid in inputs:
attrs = inputs[eid]
for attr, values in attrs.items():

new_delta = sum(values.values())
model_instance.delta = new_delta

model_instance.step()

return time + 1 # Step size is 1 second

In this example, the inputs could be something like this:

{
'Model_0': {

'delta': {'src_id_0': 23},
},
'Model_1':

'delta': {'src_id_1': 42},
},

}

The inner dictionaries containing the actual values may contain multiple entries if multiple source entities provide input
for another entity. The simulator receiving these inputs is responsible for aggregating them (e.g., by taking their sum,
minimum or maximum. Since we are not interested in the source’s IDs, we convert that dict to a list with values.
values() before we calculate the sum of all input values.

After we converted the inputs to something that our simulator can work with, we let it finally perform its next simulation
step.

The return value time + 1 tells mosaik that we wish to perform the next step in one second (in simulation time), as the
time_resolution is 1. (second per integer step). Instead of using a fixed (hardcoded) step size you can easily implement
any other stepping behavior.
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5.1.8 get_data()

The get_data() call allows other simulators to get the values of the delta and val attributes of our models (the
attributes we listed in the simulator meta data):

def get_data(self, outputs):
data = {}
for eid, attrs in outputs.items():

model = self.entities[eid]
data[eid] = {}
for attr in attrs:

if attr not in self.meta['models']['ExampleModel']['attrs']:
raise ValueError('Unknown output attribute: %s' % attr)

# Get model.val or model.delta:
data[eid][attr] = getattr(model, attr)

The outputs parameter contains the query and may in our case look like this:

{
'Model_0': ['delta', 'value'],
'Model_1': ['value'],

}

The expected return value would then be:

{
'Model_0': {'delta': 1, 'value': 24},
'Model_1': {'value': 3},

}

In our implementation we loop over each entity ID for which data is requested. We then loop over all requested attributes
and check if they are valid. If so, we dynamically get the requested value from our model instance via getattr(obj,
'attr'). We store all values in the data dictionary and return it when we are done.

5.1.9 Making it executable

The last step is adding a main()method to make our simulator executable (e.g., via python -m simulator_mosaik
HOST:PORT). The package mosaik_api contains the method start_simulation() which creates a socket, connects
to mosaik and listens for requests from it. You just call it in your main() and pass an instance of your simulator class
to it:

def main():
return mosaik_api.start_simulation(ExampleSim())

if __name__ == '__main__':
main()

Simulators running on different nodes than the mosaik instance are supported explicitly with the mosaik Python-API
v2.4 upward via the remote flag. A simulator with the start_simulation()method in its main() can then be called
e.g. via
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python simulator_mosaik –r HOST:PORT

in the command line. The mosaik scenario, started independently, can then connect to the simulator via the statement
connect: HOST:PORT in its “sim_config” ( Configuration). Note that it may make sense to introduce a short waiting time
into your scenario to give you enough time to start both processes. Alternatively, the remote connection of simulators
supports also a timeout (via the timeout flag, e.g. –t 60 in the command line call will cause your simulator to wait for
60 seconds for an initial message from mosaik).

5.1.10 Summary

We have now implemented the mosaik Sim-API for our simulator. The following listing combines all the bits explained
above:

# simulator_mosaik.py
"""
Mosaik interface for the example simulator.

"""
import mosaik_api

import example_model

META = {
'type': 'time-based',
'models': {

'ExampleModel': {
'public': True,
'params': ['init_val'],
'attrs': ['delta', 'val'],

},
},

}

class ExampleSim(mosaik_api.Simulator):
def __init__(self):

super().__init__(META)
self.eid_prefix = 'Model_'
self.entities = {} # Maps EIDs to model instances/entities

def init(self, sid, time_resolution, eid_prefix=None):
if float(time_resolution) != 1.:

raise ValueError('ExampleSim only supports time_resolution=1., but'
' %s was set.' % time_resolution)

if eid_prefix is not None:
self.eid_prefix = eid_prefix

return self.meta

def create(self, num, model, init_val):
next_eid = len(self.entities)
entities = []

(continues on next page)
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(continued from previous page)

for i in range(next_eid, next_eid + num):
model_instance = example_model.Model(init_val)
eid = '%s%d' % (self.eid_prefix, i)
self.entities[eid] = model_instance
entities.append({'eid': eid, 'type': model})

return entities

def step(self, time, inputs, max_advance):
# Check for new delta and do step for each model instance:
for eid, model_instance in self.entities.items():

if eid in inputs:
attrs = inputs[eid]
for attr, values in attrs.items():

new_delta = sum(values.values())
model_instance.delta = new_delta

model_instance.step()

return time + 1 # Step size is 1 second

def get_data(self, outputs):
data = {}
for eid, attrs in outputs.items():

model = self.entities[eid]
data[eid] = {}
for attr in attrs:

if attr not in self.meta['models']['ExampleModel']['attrs']:
raise ValueError('Unknown output attribute: %s' % attr)

# Get model.val or model.delta:
data[eid][attr] = getattr(model, attr)

return data

def main():
return mosaik_api.start_simulation(ExampleSim())

if __name__ == '__main__':
main()

We can now start to write our first scenario, which we will do in the next section.
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5.2 Creating and running simple simulation scenarios

We will now create a simple scenario with mosaik in which we use a simple data collector to print some output from
our simulation. That means, we will instantiate a few ExampleModels and a data monitor. We will then connect the
model instances to that monitor and simulate that for some time.

5.2.1 Configuration

You should define the most important configuration values for your simulation as “constants” on top of your scenario
file. This makes it easier to see what’s going on and change the parameter values.

Two of the most important parameters that you need in almost every simulation are the simulator configuration and the
duration of your simulation:

# Sim config. and other parameters
SIM_CONFIG = {

'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',

},
'Collector': {

'cmd': '%(python)s collector.py %(addr)s',
},

}
END = 10 # 10 seconds

The sim config specifies which simulators are available and how to start them. In the example above, we list our
ExampleSim as well as Collector (the names are arbitrarily chosen). For each simulator listed, we also specify how to
start it.

Since our example simulator is, like mosaik, written in Python 3, mosaik can just import it and execute it in-process.
The line 'python': 'simulator_mosaik:ExampleSim' tells mosaik to import the package simulator_mosaik
and instantiate the class ExampleSim from it.

The data collector will be started as external process which will communicate with mosaik via sockets. The line 'cmd':
'%(python)s collector.py %(addr)s' tells mosaik to start the simulator by executing the command python
collector.py. Beforehand, mosaik replaces the placeholder %(python)s with the current python interpreter (the
same as used to execute the scenario script) and %(addr)s with its actual socket address HOSTNAME:PORT so that
the simulator knows where to connect to.

The section about the Sim Manager explains all this in detail.

Here is the complete file of the data collector:

"""
A simple data collector that prints all data when the simulation finishes.

"""
import collections

import mosaik_api

META = {
'type': 'event-based',

(continues on next page)
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'models': {
'Monitor': {

'public': True,
'any_inputs': True,
'params': [],
'attrs': [],

},
},

}

class Collector(mosaik_api.Simulator):
def __init__(self):

super().__init__(META)
self.eid = None
self.data = collections.defaultdict(lambda:

collections.defaultdict(dict))

def init(self, sid, time_resolution):
return self.meta

def create(self, num, model):
if num > 1 or self.eid is not None:

raise RuntimeError('Can only create one instance of Monitor.')

self.eid = 'Monitor'
return [{'eid': self.eid, 'type': model}]

def step(self, time, inputs, max_advance):
data = inputs.get(self.eid, {})
for attr, values in data.items():

for src, value in values.items():
self.data[src][attr][time] = value

return None

def finalize(self):
print('Collected data:')
for sim, sim_data in sorted(self.data.items()):

print('- %s:' % sim)
for attr, values in sorted(sim_data.items()):

print(' - %s: %s' % (attr, values))

if __name__ == '__main__':
mosaik_api.start_simulation(Collector())

As its name suggests it collects all data it receives each step in a dictionary (including the current simulation time) and
simply prints everything at the end of the simulation.
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5.2.2 The World

The next thing we do is instantiating a World object. This object will hold all simulation state. It knows which
simulators are available and started, which entities exist and how they are connected. It also provides most of the
functionality that you need for modelling your scenario:

import mosaik

world = mosaik.World(SIM_CONFIG)

5.2.3 The scenario

Before we can instantiate any simulation models, we first need to start the respective simulators. This can be done by
calling World.start(). It takes the name of the simulator to start and, optionally, some simulator parameters which
will be passed to the simulators init() method. So lets start the example simulator and the data collector:

examplesim = world.start('ExampleSim', eid_prefix='Model_')
collector = world.start('Collector')

We also set the eid_prefix for our example simulator. What gets returned by World.start() is called a model factory.

We can use this factory object to create model instances within the respective simulator. In your scenario, such an
instance is represented as an Entity. The model factory presents the available models as if they were classes within
the factory’s namespace. So this is how we can create one instance of our example model and one ‘Monitor’ instance:

model = examplesim.ExampleModel(init_val=2)
monitor = collector.Monitor()

The init_val parameter that we passed to ExampleModel is the same as in the create() method of our Sim API
implementation.

Now, we need to connect the example model to the monitor. That’s how we tell mosaik to send the outputs of the
example model to the monitor.

world.connect(model, monitor, 'val', 'delta')

The method World.connect() takes one entity pair – the source and the destination entity, as well as a list of attributes
or attribute tuples. If you only provide single attribute names, mosaik assumes that the source and destination use the
same attribute name. If they differ, you can instead pass a tuple like ('val_out', 'val_in').

Quite often, you will neither create single entities nor connect single entity pairs, but work with large(r) sets of entities.
Mosaik allows you to easily create multiple entities with the same parameters at once. It also provides some utility
functions for connecting sets of entities with each other. So lets create two more entities and connect them to our
monitor:

import mosaik.util

more_models = examplesim.ExampleModel.create(2, init_val=3)
mosaik.util.connect_many_to_one(world, more_models, monitor, 'val', 'delta')
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Instead of instantiating the example model directly, we called its static method create() and passed the num-
ber of instances to it. It returns a list of entities (two in this case). We used the utility function mosaik.util.
connect_many_to_one() to connect all of them to the database. This function has a similar signature as World.
connect(), but the first two parameters are a world instance and a set (or list) of entities that are all connected to the
dest_entity.

Mosaik also provides the function mosaik.util.connect_randomly(). This method randomly connects one set of
entities to another set. These two methods should cover most use cases. For more special ones, you can implement
custom functions based on the primitive World.connect().

5.2.4 The simulation

In order to start the simulation, we call World.run() and specify for how long we want our simulation to run:

world.run(until=END)

Executing the scenario script will then give us the following output:

Collected data:
- ExampleSim-0.Model_0:
- delta: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}
- val: {0: 3, 1: 4, 2: 5, 3: 6, 4: 7, 5: 8, 6: 9, 7: 10, 8: 11, 9: 12}

- ExampleSim-0.Model_1:
- delta: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}
- val: {0: 4, 1: 5, 2: 6, 3: 7, 4: 8, 5: 9, 6: 10, 7: 11, 8: 12, 9: 13}

- ExampleSim-0.Model_2:
- delta: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}

Progress: 85.00%
Progress: 90.00%
Progress: 95.00%
Progress: 100.00%
Simulation finished successfully.

5.2.5 Summary

This section introduced you to the basic of scenario creation in mosaik. For more details you can check the guide to
scenarios.

For your convenience, here is the complete scenario that we created in this tutorial. You can use this for some more
experiments before continuing with this tutorial:

# demo_1.py
import mosaik
import mosaik.util

# Sim config. and other parameters
SIM_CONFIG = {

'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',

},
'Collector': {

'cmd': '%(python)s collector.py %(addr)s',
(continues on next page)
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},
}
END = 10 # 10 seconds

# Create World
world = mosaik.World(SIM_CONFIG)

# Start simulators
examplesim = world.start('ExampleSim', eid_prefix='Model_')
collector = world.start('Collector')

# Instantiate models
model = examplesim.ExampleModel(init_val=2)
monitor = collector.Monitor()

# Connect entities
world.connect(model, monitor, 'val', 'delta')

# Create more entities
more_models = examplesim.ExampleModel.create(2, init_val=3)
mosaik.util.connect_many_to_one(world, more_models, monitor, 'val', 'delta')

# Run simulation
world.run(until=END)

The next part of the tutorial will be about integrating control mechanisms into a simulation.

5.3 Adding a control mechanism to a scenario

Now that we integrated our first simulator into mosaik and tested it in a simple scenario, we should implement a control
mechanism and mess around with our example simulator a little bit.

As you remember, our example models had a value to which they added something in each step. Eventually, their value
will end up being very high. We’ll use a multi-agent system to keep the values of our models in [-3, 3]. The agents
will monitor the current value of their respective models and when it reaches -3/3, they will set delta to 1/-1 for their
model.

Implementing the Sim API for control strategies is very similar to implementing it for normal simulators. We start
again by importing the mosaik_api package and defining the simulator meta data:

# controller.py
"""
A simple demo controller.

"""
import mosaik_api

META = {
'type': 'event-based',
'models': {

(continues on next page)
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'Agent': {
'public': True,
'params': [],
'attrs': ['val_in', 'delta'],

},
},

}

We set the type of the simulator to ‘event-based’. As we have learned, this has two main implications:

1. Whenever another simulator provides new input for the simulator, a step is triggered (at the output time). So we don’t
need to take care of the synchronisation of the models and agents. As our example simulator is of type time-based, it is
only stepped at its self-defined times and will thus not be triggered by (potential) outputs of the agents. It will receive
any output of the agents in its subsequent step.

2. The provision of output of event-based simulators is optional. So if there’s nothing to report at a specific step, the
attributes can (and should be) omitted in the get_data’s return dictionary.

Our control mechanism will use agents to control other entities. The agent has no parameters and two attributes, the
input ‘val_in’ and the output ‘delta’.

Let’s continue and implement mosaik_api.Simulator:

class Controller(mosaik_api.Simulator):
def __init__(self):

super().__init__(META)
self.agents = []

Again, nothing special is going on here. We pass our meta data dictionary to our super class and set an empty list for
our agents.

Because our agents don’t have an internal concept of time, we don’t need to take care of the time_resolution of the
scenario. And as there aren’t any simulator parameters either, we don’t need to implement init(). The default
implementation will return the meta data, so there’s nothing we need to do in this case.

Implementing create() is also straight forward:

def create(self, num, model):
n_agents = len(self.agents)
entities = []
for i in range(n_agents, n_agents + num):

eid = 'Agent_%d' % i
self.agents.append(eid)
entities.append({'eid': eid, 'type': model})

return entities

Every agent gets an ID like “Agent_*<num>*”. Because there might be multiple create() calls, we need to keep
track of how many agents we already created in order to generate correct entity IDs. We also create a list of {‘eid’:
‘Agent_<num>’, ‘type’: ‘Agent’} dictionaries for mosaik.

You may have noticed that we, in contrast to our example simulator, did not actually instantiate any real simulation
models this time. We just pretend to do it. This okay, since we’ll implement the agent’s “intelligence” directly in
step():
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def step(self, time, inputs, max_advance):
data = {}
for agent_eid, attrs in inputs.items():

values_dict = attrs.get('val_in', {})
if len(values_dict) != 1:

raise RuntimeError('Only one ingoing connection allowed per '
'agent, but "%s" has %i.'
% (agent_eid, len(values_dict)))

value = list(values_dict.values())[0]

The inputs arguments is a nested dictionary and will look like this:

{
'Agent_0': {'val_in': {'ExampleSim-0.Model_0': -1}},
'Agent_1': {'val_in': {'ExampleSim-0.Model_1': 1}},
'Agent_2': {'val_in': {'ExampleSim-0.Model_2': 3}}

}

For each agent, there’s a dictionary with all input attributes (in this case only ‘val_in’), containing the source entities
(their full_id) with the corresponding values as key-value pairs.

First we initialize an empty data dict that will contain the set-points that our control mechanism is creating for the
models of the example simulator. We’ll fill this dict in the following loop. We iterate over all agents and extract its
input ‘val_in’; so values_dict is a dict containing the current values of all models connected to that agent. In our
example we only allow to connect one model per agent, and fetch its value.

We now do the actual check:

if value >= 3:
delta = -1

elif value <= -3:
delta = 1

else:
continue

If the value is -3 or 3, we have to set a new delta value. Else, we don’t need to do anything and can continue with a
new iteration of the loop.

If we have a new delta, we add it to the commands dict:

data[agent_eid] = {'delta': delta}

After finishing the loop, the data dict may look like this:

{
'Agent_0': {'delta': 1},
'Agent_2': {'delta': -1},

}

Agent_0 sets the new delta = 1, and Agent_2 sets the new delta = -1. Agent_1 did not set a new delta.

At the end of the step, we put the data dict to the class attribute self.data, to make it accessible in the get_data method

self.data = data

We return None to mosaik, as we don’t want to step ourself, but only when the controlled models provide new values.
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return None

After having called step, mosaik requests the new set-points via the get_data function. In principle we could just
return the self.data dictionary, as we already constructed that in the adequate format. For illustrative purposes we do it
manually anyhow. Additionally, if we do it like that, we can only send back the attributes that are actually needed by
(connected to) other simulators:

def get_data(self, outputs):
data = {}
for agent_eid, attrs in outputs.items():

for attr in attrs:
if attr != 'delta':

raise ValueError('Unknown output attribute "%s"' % attr)
if agent_eid in self.data:

data.setdefault(agent_eid, {})[attr] = self.data[agent_eid][attr]

return data

def main():

Here is the complete code for our (very simple) controller / mutli-agent system:

# controller.py
"""
A simple demo controller.

"""
import mosaik_api

META = {
'type': 'event-based',
'models': {

'Agent': {
'public': True,
'params': [],
'attrs': ['val_in', 'delta'],

},
},

}

class Controller(mosaik_api.Simulator):
def __init__(self):

super().__init__(META)
self.agents = []
self.data = {}

def create(self, num, model):
n_agents = len(self.agents)
entities = []
for i in range(n_agents, n_agents + num):

(continues on next page)
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eid = 'Agent_%d' % i
self.agents.append(eid)
entities.append({'eid': eid, 'type': model})

return entities

def step(self, time, inputs, max_advance):
data = {}
for agent_eid, attrs in inputs.items():

values_dict = attrs.get('val_in', {})
if len(values_dict) != 1:

raise RuntimeError('Only one ingoing connection allowed per '
'agent, but "%s" has %i.'
% (agent_eid, len(values_dict)))

value = list(values_dict.values())[0]

if value >= 3:
delta = -1

elif value <= -3:
delta = 1

else:
continue

data[agent_eid] = {'delta': delta}

self.data = data

return None

def get_data(self, outputs):
data = {}
for agent_eid, attrs in outputs.items():

for attr in attrs:
if attr != 'delta':

raise ValueError('Unknown output attribute "%s"' % attr)
if agent_eid in self.data:

data.setdefault(agent_eid, {})[attr] = self.data[agent_eid][attr]

return data

def main():
return mosaik_api.start_simulation(Controller())

if __name__ == '__main__':
main()

Next, we’ll create a new scenario to test our controller.
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5.4 Integrating a control mechanism

The scenario that we’re going to create in this last part of the tutorial will be similar to the one we created before but
incorporate the control mechanism that we just created.

Again, we start by setting some configuration values and creating a simulation world:

# demo_2.py
import mosaik
import mosaik.util

# Sim config. and other parameters
SIM_CONFIG = {

'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',

},
'ExampleCtrl': {

'python': 'controller:Controller',
},
'Collector': {

'cmd': '%(python)s collector.py %(addr)s',
},

}
END = 10 # 10 seconds

# Create World
world = mosaik.World(SIM_CONFIG)

We added ExampleCtrl to the sim config and let it be executed in-process with mosaik.

We can now start one instance of each simulator:

# Start simulators
examplesim = world.start('ExampleSim', eid_prefix='Model_')
examplectrl = world.start('ExampleCtrl')
collector = world.start('Collector')

We’ll create three model instances, the same number of agents, and one database:

# Instantiate models
models = [examplesim.ExampleModel(init_val=i) for i in range(-2, 3, 2)]
agents = examplectrl.Agent.create(len(models))
monitor = collector.Monitor()

We use a list comprehension to create three model instances with individual initial values (-2, 0 and 2). For instantiating
the same number of agent instances we use create() which does the same as a list comprehension but is a bit shorter.

Finally we establish pairwise bi-directional connections between the models and the agents:

# Connect entities
for model, agent in zip(models, agents):

world.connect(model, agent, ('val', 'val_in'))
world.connect(agent, model, 'delta', weak=True)
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The important thing here is the weak=True argument that we pass to the second connection. This tells mosaik how to
resolve the cyclic dependency, i.e. which simulator should be stepped first in case that both simulators have a scheduled
step at the same time. (In our example this will not happen, as the agents are only stepped by the models’ outputs.)

Finally, we can connect the models and the agents to the monitor and run the simulation:

mosaik.util.connect_many_to_one(world, models, monitor, 'val', 'delta')
mosaik.util.connect_many_to_one(world, agents, monitor, 'delta')

# Run simulation
world.run(until=END)

In the printed output of the collector, you can see two important things: The first is that the agents only provide output
when the delta of the controlled model is to be changed. And second, that the new delta is set at the models’ subsequent
step after it has been derived by the agents.

Collected data:
- ExampleCtrl-0.Agent_0:
- delta: {4: -1}

- ExampleCtrl-0.Agent_1:
- delta: {2: -1, 8: 1}

- ExampleCtrl-0.Agent_2:
- delta: {0: -1, 6: 1}

- ExampleSim-0.Model_0:
- delta: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: -1, 6: -1, 7: -1, 8: -1, 9: -1}
- val: {0: -1, 1: 0, 2: 1, 3: 2, 4: 3, 5: 2, 6: 1, 7: 0, 8: -1, 9: -2}

- ExampleSim-0.Model_1:
- delta: {0: 1, 1: 1, 2: 1, 3: -1, 4: -1, 5: -1, 6: -1, 7: -1, 8: -1, 9: 1}
- val: {0: 1, 1: 2, 2: 3, 3: 2, 4: 1, 5: 0, 6: -1, 7: -2, 8: -3, 9: -2}

- ExampleSim-0.Model_2:
- delta: {0: 1, 1: -1, 2: -1, 3: -1, 4: -1, 5: -1, 6: -1, 7: 1, 8: 1, 9: 1}
- val: {0: 3, 1: 2, 2: 1, 3: 0, 4: -1, 5: -2, 6: -3, 7: -2, 8: -1, 9: 0}

Progress: 83.33%
Progress: 86.67%
Progress: 90.00%
Progress: 93.33%
Progress: 96.67%
Progress: 100.00%
Simulation finished successfully.

This is the complete scenario:

# demo_2.py
import mosaik
import mosaik.util

# Sim config. and other parameters
SIM_CONFIG = {

'ExampleSim': {
'python': 'simulator_mosaik:ExampleSim',

},
'ExampleCtrl': {

'python': 'controller:Controller',
(continues on next page)
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},
'Collector': {

'cmd': '%(python)s collector.py %(addr)s',
},

}
END = 10 # 10 seconds

# Create World
world = mosaik.World(SIM_CONFIG)

# Start simulators
examplesim = world.start('ExampleSim', eid_prefix='Model_')
examplectrl = world.start('ExampleCtrl')
collector = world.start('Collector')

# Instantiate models
models = [examplesim.ExampleModel(init_val=i) for i in range(-2, 3, 2)]
agents = examplectrl.Agent.create(len(models))
monitor = collector.Monitor()

# Connect entities
for model, agent in zip(models, agents):

world.connect(model, agent, ('val', 'val_in'))
world.connect(agent, model, 'delta', weak=True)

mosaik.util.connect_many_to_one(world, models, monitor, 'val', 'delta')
mosaik.util.connect_many_to_one(world, agents, monitor, 'delta')

# Run simulation
world.run(until=END)

Congratulations, you have mastered the mosaik tutorial. The following sections provide a more detailed description of
everything you learned so far.

Odysseus tutorial

5.5 Connecting mosaik and Odysseus

In this first part of the tutorial we cover the two ways to connect mosaik and Odysseus, the second part is about how to
use Odysseus to process, visualize and store simulation data.

You can choose between two different solutions to connect mosaik and Odysseus. Both have their advantages and
disadvantages and therefore, the right choice depends on your use case. We recommend to use the SimAPI version for
beginners.

No matter which connection we use, we first have to download Odysseus Server and Studio Client. For the first start of
Odysseus Studio the default user “System” and password “manager” have to be used, the tenant can be left empty.
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5.5.1 Connecting via mosaik protocol handler

The easiest way to connect to mosaik is to use the mosaik protocol handler in Odysseus, which is available as installable
feature in Odysseus Studio. It uses the mosaik API through remote procedure calls (RPC) and offers a close coupling
of mosaik and Odysseus. With this, a blocked simulation in mosaik or a blocked processing in Odysseus will block the
other system as well. If this is a problem in your use case, you should look in the section Connecting via ZeroMQ.

First we have to install the mosaik feature from the incubcation site in odysseus, which can be found in the Odysseus
Wrapper Plugins.

After installing the feature we create a new Odysseus project and in the project a new Odysseus script file (more
information on Odysseus projects and script files can be found in this tutorial). To use mosaik as source we can use the
mosaik operator which contains a standard configuration of mandatory parameters. The script-code in the Odysseus
query language PQL looks like this:

#PARSER PQL
#METADATA TimeInterval
#QUERY
mosaikCon := MOSAIK({SOURCE = 'mosaik', type='simapi'})

This is for the standard configuration. If you want to change something, for example to use another port, you need a
more detailed configuration:

#PARSER PQL
#METADATA TimeInterval
#QUERY
mosaikCon1 := ACCESS({TRANSPORT = 'TCPServer',

PROTOCOL = 'mosaik',
SOURCE = 'mosaik',
DATAHANDLER = 'KeyValueObject',
WRAPPER = 'GenericPush',
OPTIONS = [
['port', '5555'],
['mosaikPort', '5554'],
['byteorder', 'LITTLE_ENDIAN']

]})

As we can see the protocol ‘mosaik’ is chosen. When the query is started, the mosaik protocol handler in Odysseus
opens a TCP server for receiving data from mosaik.

Before we can receive data, we have to adapt our mosaik scenario. Here we take the mosaik-demo as an example.
The Odysseus simulator is treated just like any other component in mosaik. It has to be added to the SIM_CONFIG
parameter. For the connection to the simulator the connect command is used and the IP address and port of Odysseus
have to be specified:

sim_config = {
'Odysseus': {

'connect': '127.0.0.1:5554',
}

After that, we have to initialize the simulator and connect it to all components whose data we want to revceive in
Odysseus. For the mosaik-demo, we have to add the following lines of code to the scenario definition:

# Start simulators
odysseusModel = world.start('Odysseus', step_size=60*15)

(continues on next page)
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# Instantiate models
odysseus = odysseusModel.Odysseus.create(1)
ody = odysseus[0]

# Connect entities
connect_many_to_one(world, nodes, ody, 'P', 'Vm')
connect_many_to_one(world, houses, ody, 'P_out')
connect_many_to_one(world, pvs, ody, 'P')

Now we have set up everything to receive mosaiks data in Odysseus. To begin transfering data we have to start first the
query in Odysseus and then the simulation in mosaik.

For more information on how to use Odysseus visit part two.

5.5.2 Connecting via ZeroMQ

In contrast to the close coupling via mosaik protocol handler the coupling via ZeroMQ is more loose. Mosaik sends
all data as data stream with ZeroMQ and Odysseus can even be closed and restarted during the simulation without
affecting mosaik. This behaviour holds the risk of loosing data so it should only be used if this doesn’t cause problems.

First we have to install the following features for Odysseus from incubation site:

• Odysseus Wrapper Plugins / Zero MQ

• Odysseus Wrapper Plugins / mosaik (only if you want to use the mosaik operator)

And from the update site:

• Odysseus Odysseus_core Plugins / Json Wrapper

After installing the features we create a new Odysseus project and in the project a new Odysseus script file. The
messages sent by mosaik are formatted in JSON format and sent via ZeroMQ. So we have to choose the corresponding
ZeroMQ transport handler and JSON protocol handler:

#PARSER PQL
#METADATA TimeInterval
#QUERY
mosaikCon3 := ACCESS({TRANSPORT = 'ZeroMQ',

PROTOCOL = 'JSON',
SOURCE = 'mosaik',
DATAHANDLER = 'KeyValueObject',
WRAPPER = 'GenericPush',
OPTIONS = [
['host', '127.0.0.1'],
['readport', '5558'],
['writeport', '5559'],
['byteorder', 'LITTLE_ENDIAN']

]})

If you use the standard configurtion you can use the short version (feature “wrapper / mosaik” has to be installed):

#PARSER PQL
#METADATA TimeInterval

(continues on next page)
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#QUERY
mosaikCon2 := MOSAIK({SOURCE = 'mosaik', type='zeromq'})

After setting up Odysseus we have to install the mosaik-zmq adapter in our mosaik virtualenv. It is available on GitLab
and PyPI. To install it we have to activate our mosaik virtualenv and execute (if there are errors during installation have
a look in the readme):

pip install mosaik-zmq

The mosaik-zmq adapter is treated in mosaik like any other component of the simulation. If we use the mosaik demo,
we have to add the new simulator to the SIM_CONFIG parameter:

sim_config = {
'ZMQ': {

'cmd': 'mosaik-zmq %(addr)s',
},

Also we have to initialize the ZeroMQ simulator and connect it to other components:

# Start simulators
zmqModel = world.start('ZMQ', step_size=15*60, duration=END)

# Instantiate models
zmq = zmqModel.Socket(host='tcp://*:', port=5558, socket_type='PUB')

# Connect entities
connect_many_to_one(world, nodes, zmq, 'P', 'Vm')
connect_many_to_one(world, houses, zmq, 'P_out')
connect_many_to_one(world, pvs, zmq, 'P')

For more information on how to use Odysseus visit part two.

5.6 Using Odysseus to process, visualize and store simulation data

This tutorial will give some examples on how you can use Odysseus to process, visualize and store the data from
mosaik. More information about connecting mosaik and Odysseus can be found in the first part of the tutorial and
more about Odysseus in general can be found in its documentation. If you have no experience with Odysseus you
should first visit the tutorials in its documentation. Simple query processing and selection, projection and map should
explain the basics.

5.6.1 Processing

Mosaik sends data in JSON format and so the key-value-object has to be used as datatype for receiving in Odysseus.
But most operators in Odysseus are based on relational tuples with a fixed schema, so it can be useful to transform
arriving key-value objects to relational tuples. For this the totuple operator can be used. It creates relational tuples with
the given attributes and omitts all data, which is not included in the schema:

tuples = TOTUPLE({
SCHEMA = [

['odysseus_0.Vm.PyPower-0.0-tr_sec', 'Double'],
(continues on next page)
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['odysseus_0.Vm.PyPower-0.0-node_b1', 'Double'],
['odysseus_0.Vm.PyPower-0.0-node_b2', 'Double'],
['odysseus_0.Vm.PyPower-0.0-node_b3', 'Double'],
['odysseus_0.Vm.PyPower-0.0-node_b4', 'Double'],
['timestamp', 'STARTTIMESTAMP']

],
TYPE = 'mosaik'},
mosaikCon)

For better handling we can rename the attributes with the rename operator:

renamedTuples = RENAME({aliases =
['tr_sec_Vm', 'node1_Vm', 'node2_Vm', 'node3_Vm', 'node4_Vm', 'timestamp

→˓']
}, tuples)

We can also add computations to the data with a map operator. The expressions parameter contains first the computation
and second the new name for every attribute. In this example the deviation of voltage to the nominal voltage of 230 V
is calculated (more information about the offered functions can be found here):

voltageDeviation = MAP({EXPRESSIONS = [
['abs(230 - tr_sec_Vm)', 'dev_tr_sec_Vm'],
['abs(230 - Node1_Vm)', 'dev_Node1_Vm'],
['abs(230 - Node2_Vm)', 'dev_Node2_Vm'],
['abs(230 - Node3_Vm)', 'dev_Node3_Vm'],
['abs(230 - Node4_Vm)', 'dev_Node4_Vm']

]}, renamedTuples)

By using the aggregate operator we are able to calculate e.g. the average values. We have to add an timewindow
operator first to have the right timestamps for aggregating.

windowedTuples = TIMEWINDOW({SIZE = [5, 'MINUTES']}, voltageDeviation)
aggregatedTuples = AGGREGATE({

AGGREGATIONS = [
['AVG', 'dev_tr_sec_Vm', 'AVG_dev_tr_sec_P'],
['AVG', 'dev_Node1_Vm', 'AVG_dev_Node1_P'],
['AVG', 'dev_Node2_Vm', 'AVG_dev_Node2_P'],
['AVG', 'dev_Node3_Vm', 'AVG_dev_Node3_P'],
['AVG', 'dev_Node4_Vm', 'AVG_dev_Node4_P']
]},

windowedTuples)

5.6.2 Visualisation

To visualize data in Odysseus dashboards can be used, which can contain different graphs. For the data stream shown
in the section above an exemplary dashboard could look like the following picture:

More information about dashboards in Odysseus can be found in the documentation.
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5.6.3 Storing

If we want to save the results of our Odysseus query, we can use the sender operator to export it, e.g. to a csv file:

send = SENDER({
SINK='writeCSV',
transport='File',
wrapper='GenericPush',
protocol='CSV',
dataHandler='Tuple',
options=[

['filename','${WORKSPACEPROJECT}\output2.csv']
]}, aggregatedTuples)

Odysseus also offers adapters to store the processed data to different databases (e.g. mysql, postgres and oracle). More
details can be found here.

Java API tutorial

5.7 Integrating a Model in Java

What do we do if we want to connect a simulator to mosaik which ist written in Java? In this tutorial we will describe
how to create a simple model in Java and integrate it into mosaik using the mosaik-Java high level API . We will do this
with the help of our simple model from the Python tutorial, i. e. we will try to replicate the first part of the Python
tutorial as close as possible.

5.7.1 Getting the Java API

First you have to get the sources of the mosaik-API for Java which is provided on Gitlab. Clone it and put it in the
development environment of your choice.

5.7.2 Creating the model

Next we create a Java class for our model. Our example model has exact the same behaviour as our simple model in the
Python tutorial. To distinguish it from the Python-model we call it JModel. The only difference to the Python-model is
that in Java we need two constructors (with and without init value) and getter and setter methods to access the variables
val and delta.

class JModel {
private float val;
private float delta = 1;

public JModel() {
this.val = 0;

}

public JModel(float initVal) {
this.val = initVal;

}

public float get_val() {
(continues on next page)
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return this.val;
}

public float get_delta() {
return this.delta;

}

public void set_delta(float delta) {
this.delta = delta;

}

public void step() {
this.val += this.delta;

}
}

5.7.3 Creating the simulator

A simulator provides the functionality that is necessary to manages instances of our model and to execute the models.
We need a method addModel to create instances of our model and an ArrayList models to store them. The step method
executes a simulation for each model instance. To access the values and deltas we need getter and setter methods. In
our example the class implementing these functionalities is called JSimulator.

class JSimulator {
private final ArrayList<JModel> models;

public JSimulator() {
this.models = new ArrayList<JModel>();

}

public void add_model(Number init_val) {
JModel model;
if (init_val == null) {

model = new JModel();
} else {

model = new JModel(init_val.floatValue());
}
this.models.add(model);

}

public void step() {
for (int i = 0; i < this.models.size(); i++) {

JModel model = this.models.get(i);
model.step();

}
}

public float get_val(int idx) {
JModel model = this.models.get(idx);
return model.get_val();

}
(continues on next page)
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public float get_delta(int idx) {
JModel model = this.models.get(idx);
return model.get_delta();

}

public void set_delta(int idx, float delta) {
JModel model = this.models.get(idx);
model.set_delta(delta);

}
}

5.7.4 Implementing the mosaik API

Finally we need to implement the mosaik-API methods. In our example this is done in a class called JExampleSim.
This class has to extent the abstract class Simulator from mosaik-java-api which is the Java-equivalent to the Simulator
class in Python. The class Simulator provides the four mosaik-API-calls init(), create(), step(), and getData()
which we have to implement. For a more detailed explanation of the API-calls see the API-documentation.

But first we have to put together the meta-data containing information about models, attributes, and parameters of our
simulator. ‘models’ are all models our simulator provides. In our case this is only JModel. ‘public’: true tells mosaik
that it is allowed to create models of this class. ‘params’ are parameter that are passed during initialisation, in our case
this is init_val. ‘attrs’ is a list of values that can be exchanged.

private static final JSONObject meta = (JSONObject) JSONValue.parse(("{"
+ " 'api_version': " + Simulator.API_VERSION + ","
+ " 'models': {"
+ " 'JModel': {"
+ " 'public': true,"
+ " 'params': ['init_val'],"
+ " 'attrs': ['val', 'delta']"
+ " }"
+ " }"
+ "}").replace("'", "\""));

First method is init() that returns the meta data. In addition it is possible to pass arguments for initialization. In our
case there is eid_prefix which will be used to name instances of the models:

public Map<String, Object> init(String sid, Map<String, Object> simParams) {
if (simParams.containsKey("eid_prefix")) {

this.eid_prefix = simParams.get("eid_prefix").toString();
}

return JExampleSim.meta;
}

create() creates new instances of the model JModel by calling the add_model-method of JSimulator. It also assigns
ID (eid) to the models, so that it is able to keep track of them. It has to return a list with the name (eid) and type of the
models. You can find more details about the return object in the API-documentation.

@Override
public List<Map<String, Object>> create(int num, String model,

Map<String, Object> modelParams) {
(continues on next page)
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JSONArray entities = new JSONArray();
for (int i = 0; i < num; i++) {

String eid = this.eid_prefix + (this.idCounter + i);
if (modelParams.containsKey("init_val")) {

Number init_val = (Number) modelParams.get("init_val");
this.simulator.add_model(init_val);

}
JSONObject entity = new JSONObject();
entity.put("eid", eid);
entity.put("type", model);
entity.put("rel", new JSONArray());
entities.add(entity);
this.entities.put(eid, this.idCounter + i);

}
this.idCounter += num;
return entities;

}

step() tells the simulator to perform a simulation step. It passes the time, the current simulation time, and inputs, a JSON
data object with input data from preceding simulators. The structure of inputs is explained in the API-documentation.
If there are new delta-values in inputs they are set in the appropriate model instance. Finally it calls the simulator’s
step()-method which, on its part, calls the step()-methods of the individual model-instances.

public long step(long time, Map<String, Object> inputs) {
//go through entities in inputs

for (Map.Entry<String, Object> entity : inputs.entrySet()) {
//get attrs from entity
Map<String, Object> attrs = (Map<String, Object>) entity.getValue();
//go through attrs of the entity
for (Map.Entry<String, Object> attr : attrs.entrySet()) {

//check if there is a new delta
String attrName = attr.getKey();
if (attrName.equals("delta")) {

//sum up deltas from different sources
Object[] values = ((Map<String, Object>) attr.getValue()).values().

→˓toArray();
float value = 0;
for (int i = 0; i < values.length; i++) {

value += ((Number) values[i]).floatValue();
}
//set delta
String eid = entity.getKey();
int idx = this.entities.get(eid);
this.simulator.set_delta(idx, value);

}
}

}
//call step-method
this.simulator.step();

return time + this.stepSize;
}

46 Chapter 5. Tutorials



mosaik Documentation, Release 3.0.0

getData() gets the simulator’s output data from the last simulation step. It passes outputs, a JSON data object that de-
scribes which parameters are requested. getData() goes through outputs, retrieves the requested values from the appro-
priate instances of JModel and puts it in data. The structure of outputs and data is explained in the API-documentation.

public Map<String, Object> getData(Map<String, List<String>> outputs) {
Map<String, Object> data = new HashMap<String, Object>();
//*outputs* lists the models and the output values that are requested
//go through entities in outputs
for (Map.Entry<String, List<String>> entity : outputs.entrySet()) {

String eid = entity.getKey();
List<String> attrs = entity.getValue();
HashMap<String, Object> values = new HashMap<String, Object>();
int idx = this.entities.get(eid);
//go through attrs of the entity
for (String attr : attrs) {

if (attr.equals("val")) {
values.put(attr, this.simulator.get_val(idx));

}
else if (attr.equals("delta")) {

values.put(attr, this.simulator.get_delta(idx));
}

}
data.put(eid, values);

}
return data;

}

5.7.5 Connecting the simulator to mosaik

We use the same scenario as in our Python example demo1. The only thing we have to change is the way we connect
our simulator to mosaik. There are two ways to do this:

• cmd: mosaik calls the Java API by executing the command given in cmd. Mosaik starts the Java-API in a new
process and connects it to mosaik. This works only if your simulator runs on the same machine as mosaik.

• connect: mosaik connects to the Java-API which runs as a TCP server. This works also if mosaik and the
simulator are running on different machines.

For more details about how to connect simulators to mosaik see the section about the Sim Manager in the mosaik-
documentation.

Connecting the simulator using cmd

We have to give mosaik the command how to start our Java simulator. This is done in SIM_CONFIG. The marked lines
show the differences to our Python simulator.

# Sim config. and other parameters
SIM_CONFIG = {

'JExampleSim': {
'cmd': 'java -cp JExampleSim.jar de.offis.mosaik.api.JExampleSim %(addr)s',

},
'Collector': {

'cmd': 'python collector.py %(addr)s',
(continues on next page)
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},
}
END = 10 * 60 # 10 minutes

The placeholder %(addr)s is later replaced with IP address and port by mosaik. If we now execute demo_1.py we get
the same output as in our Python-example.

Note: The command how to start the Java simulator may differ depending on your operating system. If the command
is complex, e. g. if it contains several libraries, it is usually better to put it in a script and than call the script in cmd.

Connecting the simulator using connect

In this case the Java API acts as TCP server and listens at the given address and port. Let’s say the simulator runs on
a computer with the IP-address 1.2.3.4. We can now choose a port that is not assigned by default. In our example we
choose port 5678. Make sure that IP-address and port is accessible from the computer that hosts mosaik (firewalls etc.).

Note: Of course you can run mosaik and your simulator on the same machine by using 127.0.0.1:5678 (localhost).
You may want to do this for testing and experimenting. Apart from that the connection with cmd (see above) is usually
the better alternative because you don’t have to start the Java part separately.

We have to tell mosaik how to connect to the simulator. This is done in SIM_CONFIG in our scenario (demo1):

# Sim config. and other parameters
SIM_CONFIG = {

'JExampleSim': {
'connect': '1.2.3.4:5678',

},
'Collector': {

'cmd': 'python collector.py %(addr)s',
},

}
END = 10 * 60 # 10 minutes

The marked lines show the differences to our Python simulator. Our simulator is now called JExampleSim and we need
to give the simulator’s address and port after the connect key word.

Now we start JExampleSim. To tell the mosaik-Java-API to run as TCP-server is done by starting it with “server” as
second argument. The first command line argument is IP-address and port. The command line in our example looks
like this:

java -cp JExampleSim.jar de.offis.mosaik.api.JExampleSim 1.2.3.4:5678 server

If we now execute demo_1.py we get the same output as in our Python-example.

Note: You can find the source code used in this tutorial in the mosaik-source-files in the folder docs/tutorial/code.
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CHAPTER

SIX

THE MOSAIK API

The mosaik API defines the communication protocol between mosaik and the simulators it couples. We differentiate
between a low-level and a high-level version of the API.

The low-level API uses plain network sockets to exchange JSON encoded messages.

The high-level API is an implementation of the low-level API in a specific programming language. It encapsulates all
parts related to networking (socket handling, an event loop, message (de)serialization) and provides an abstract base
class with a few methods that have to be implemented in a subclass. A high-level API implementation is currently
available for Python and Java. Implementations for other languages will be added when needed.

The figure below depicts the differences between the two API levels.
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Contents:

6.1 How mosaik communicates with a simulator

This section provides a general overview which API calls exists and when mosaik calls them. The following sections
will go into more detail.

When the connection between a simulator and mosaik is established, mosaik will first call init(), optionally passing
some global parameters to the simulator. The simulators returns some meta data describing itself.

Following this, mosaik may call create() multiple times in order to instantiate one of the models that the simulator
implements. The return value contains information describing the entities created.

The end of create phase and the beginning of the step (or simulation) phase is marked by a call to setup_done(). At
this point, all entities are created and all relations between them are established.

When the simulation has been started, mosaik repeatedly calls step(). This allows the simulator to step forward in
time. It returns the time at which it wants to perform its next step.

Finally, mosaik sends a stop() message to every simulator to request its shut-down.

The following figure depicts the sequence of these messages:
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After create() or step() have been called, there may be an arbitrary amount of get_data() calls where mosaik
requests the current values of some entities’ attributes:

6.1. How mosaik communicates with a simulator 51



mosaik Documentation, Release 3.0.0

These methods are usually sufficient to connect simple simulators to mosaik. However, control strategies, visualizations
or database adapters may need to actively query mosaik for additional data.

Thus, while a simulator is executing a simulation step, it may make asynchronous requests to mosaik. It can collect
information about the simulated topology (get_related_entities()), request a new step for itself (set_event()),
get the current simulation progress (get_progress()), query other entities for data (get_data()) and set data for
other entities (set_data()).
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The next two sections explain the low-level API and the Python high-level API in more detail.

6.2 The low-level API

The low-level API uses standard TCP sockets. If mosaik starts a simulator, that simulator needs to connect to mosaik.
If mosaik connects to a running instance of a simulator, that simulator obviously needs to provide a server socket that
mosaik can connect to.

Network messages consists of a four bytes long header and a payload of arbitrary length. The header is an unsigned
integer (uint32) in network byte order (big-endian) and stores the number of bytes in the payload. The payload itself is
a UTF-8 encoded JSON list containing the message type, a message ID and the actual content:
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Messages send between mosaik and a simulator must follow the request-reply pattern. That means, that every request
that one party makes must be responded by the other party. Request use the message type 0, replies uses 1 for success
or 2 to indicate a failure. The message ID is an integer that is unique for every request that a network socket makes.
Replies (no matter if successful or failed) need to use the message ID of the corresponding request.

The content of a request roughly map to a Python function call:

[function, [arg0, arg1, ...], {kwarg0: val0, kwar1: val1}]

Thereby, function is always a string. The type of the arguments and keyword arguments may vary depending on the
function.

The content of replies is either the return value of the request, or an error message or stack trace. Error messages and
stack traces should always be strings. The return value for successful requests depends on the function.

6.2.1 Example

We want to perform the following function call on the remote site: my_func('hello', 'world', times=23) -->
'the return value'. This would map to the following message payload:

[0, 1, ["my_func", ["hello", "world"], {"times": 23}]]

Our message is a request (message type 0), the message ID is 1 and the content is a JSON list containing the function
name as well as its arguments and keyword arguments.

The complete message sent via the network will be:

\x00\x00\x00\x36[0, 1, ["my_func", ["hello", "world"], {"times": 23}]]

In case of success, the reply’s payload to this request could look like this:

[1, 1, "the return value"]

In case of error, this could be the reply’s payload:

[2, 1, "Error in your code line 23: ..."]

The actual network messages would be:

\x00\x00\x00\x1a[1, 1, "the return value"]
\x00\x00\x00\x29[2, 1, "Error in your code line 23: ..."]

All commands that mosaik may send to a simulator are described in-depth in the next section. All asynchronous requests
that a simulator may make are described in Asynchronous requests.

API calls:

• init

• create

• setup_done

• step

• get_data

• stop

Async. requests:
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• get_progress

• get_related_entities

• get_data

• set_data

6.2.2 API calls

This section describes the API calls init(), create(), setup_done(), step(), get_data() and stop(). In
addition to these, a simulator may optionally expose additional functions (referred to as extra methods). These methods
can be called at composition time (when you create your scenario).

init

["init", [sim_id], {time_resolution=time_resolution, **sim_params}] -> meta

The init call is made once to initialize the simulator. It has one positional argument, the simulator ID, and
time_resolution and an arbitrary amount of further parameters (sim_params) as keyword arguments.

The return value meta is an object with meta data about the simulator:

{
"api_version": "x.y",
"type": "time-based"|"event-based"|"hybrid",
"models": {

"ModelName": {
"public": true|false,
"params": ["param_1", ...],
"attrs": ["attr_1", ...],
"any_inputs": true|false,

},
...

},
"extra_methods": [

"do_cool_stuff",
"set_static_data"

]
}

The api_version is a string that defines which version of the mosaik API the simulator implements. Since mosaik API
version 2.2, the simulator’s major version (“x”, in the snippet above) has to be equal to mosaik’s. Mosaik will cancel
the simulation if a version mismatch occurs.

The type defines how the simulator is stepped and for which time the output is valid. Time-based simulators only decide
themselves on which points in time they want to be stepped (i.e. communicate with the other simulators). Their output
is valid until the next step. Event-based simulators are always stepped when a predecessor provides new input, but
they can also schedule steps for themselves. A more fine-grained behavior can be set for hybrid simulators. See the
scheduler description for details.

models is an object describing the models provided by this simulator. The entry public determines whether a model
can be instantiated by a user (true) or if it is a sub-model that cannot be created directly (false). params is a list of
parameter names that can be passed to the model when creating it. attrs is a list of attribute names that can be accessed
(reading or writing). If the optional any_inputs flag is set to true, any attributes can be connected to the model, even
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if they are not attrs. This may, for example, be useful for databases that don’t know in advance which attributes of an
entity they’ll receive.

extra_methods is an optional list of methods that a simulator provides in addition to the standard API calls (init(),
create() and so on). These methods can be called while the scenario is being created and can be used for operations
that don’t really belong into init() or create().

Example

Request:

["init", ["PowerGridSim-0"], {"time_resolution": 1., "step_size": 60}]

Reply:

{
"api_version": "3.0",
"type": "time-based",
"models": {

"Grid": {
"public": true,
"params": ["topology_file"],
"attrs": []

},
"Node": {

"public": false,
"params": [],
"attrs": ["P", "Q"]

},
"Branch": {

"public": false,
"params": [],
"attrs": ["I", "I_max"]

}
}

}

create

["create", [num, model], {**model_params}] -> entity_list

Create num instances of model using the provided model_params

num is an integer for the number of model instances to create.

model needs to be a public entry in the simulator’s meta['models'] (see init).

model_params is an object mapping parameters (from meta['models'][model]['params'], see init) to their val-
ues.

Return a (nested) list of objects describing the created model instances (entities). The root list must contain exactly
num elements. The number of objects in sub-lists is not constrained:
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[
{
"eid": "eid_1",
"type": "model_name",
"rel": ["eid_2", ...],
"children": <entity_list>,

},
...

]

The entity ID (eid) of an object must be unique within a simulator instance. For entities in the root list, type must be the
same as the model parameter. The type for objects in sub-lists may be anything that can be found in meta['models']
(see init). rel is an optional list of related entities; “related” means that two entities are somehow connect within the
simulator, either logically or via a real data-flow (e.g., grid nodes are related to their adjacent branches). The children
entry is optional and may contain a sub-list of entities.

Example

Request:

["create", [1, "Grid"], {"topology_file": "data/grid.json"}]

Reply:

[
{

"eid": "Grid_1",
"type": "Grid",
"rel": [],
"children": [

{
"eid": "node_0",
"type": "Node",

},
{

"eid": "node_1",
"type": "Node",

},
{

"eid": "branch_0",
"type": "Branch",
"rel": ["node_0", "node_1"]

}
]

}
]
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setup_done

["setup_done", [], {}] -> null

Callback that indicates that the scenario setup is done and the actual simulation is about to start.

At this point, all entities and all connections between them are know but no simulator has been stepped yet.

Implementing this method is optional.

Added in mosaik API version 2.2.

Example

Request:

["setup_done", [], {}]

Reply:

null

step

["step", [time, inputs, max_advance], {}] -> Optional[time_next_step]

Perform the next simulation step at time time using input values from inputs and return the new simulation time (the
time at which step should be called again) or null if the simulator doesn’t need to step itself.

time, max_advance, and the time_next_step are integers (or null). Their unit is arbitrary, e.g. seconds (counted from
simulation start), but has to be consistent among all simulators used in a scenario.

inputs is a dict of dicts mapping entity IDs to attributes and dicts of values (each simulator has to decide on its own
how to reduce the values (e.g., as its sum, average or maximum):

{
"eid_1": {

"attr_1": {'src_full_id_1': val_1_1, 'src_full_id_2': val_1_2, ...},
"attr_2": {'src_full_id_1': val_2_1, 'src_full_id_2': val_2_2, ...},
...

},
...

}

max_advance tells the simulator how far it can advance its time without risking any causality error, i.e. it is guaranteed
that no external step will be triggered before max_advance + 1, unless the simulator activates an output loop earlier
than that. For time-based simulators (or hybrid ones without any triggering input) max_advance is always equal to the
end of the simulation (until). See the description of the scheduler for more details.
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Example

Request:

[
"step",
[

60,
{

"node_1": {"P": [20, 3.14], "Q": [3, -2.5]},
"node_2": {"P": [42], "Q": [-23.2]},

},
3600

],
{}

]

Reply:

120

get_data

["get_data", [outputs], {}] -> data

Return the data for the requested attributes in outputs

outputs is an object mapping entity IDs to lists of attribute names whose values are requested (connected to any other
simulator):

{
"eid_1": ["attr_1", "attr_2", ...],
...

}

The return value needs to be an object of objects mapping entity IDs and attribute names to their values:

{
"eid_1: {
"attr_1": "val_1",
"attr_2": "val_2",
...

},
...
"time": *output_time* (optional)

}

Time-based simulators have set an entry for all requested attributes, whereas for event-based and hybrid simulators this
is optional (e.g. if there’s no new event).

Event-based and hybrid simulators can optionally set a timing of their non-persistent output attributes via a time entry,
which is valid for all given (non-persistent) attributes. If not given, it defaults to the current time of the step. Thus only
one output time is possible per step. For further output times the simulator has to schedule another self-step (via the
step’s return value).

6.2. The low-level API 59



mosaik Documentation, Release 3.0.0

Examples

Request:

["get_data", [{"branch_0": ["I"]}], {}]

Reply:

{
"branch_0": {

"I": 42.5
}

}

Request:

["get_data", [{"node_0": ["msg"], "node_1": ["msg"]}], {}]

Reply:

{
"node_1": {

"msg": "Hi"
},
"time": 140

}

stop

["stop", [], {}] -> null

Immediately stop the simulation and terminate.

This call has no parameters and no reply is required.

Example

Request:

["stop", [], {}]

Reply:

no reply required
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6.2.3 Asynchronous requests

get_progress

["get_progress", [], {}] -> progress

Return the current overall simulation progress in percent.

Example

Request:

["get_progress", [], {}]

Reply:

23.42

get_related_entities

["get_related_entities", [entities], {}] -> related_entities

Return information about the related entities of entities.

If entitites omitted (or null), return the complete entity graph, e.g.:

{
"nodes": {

"sid_0.eid_0": {"type": "A"},
"sid_0.eid_1": {"type": "B"},
"sid_1.eid_0": {"type": "C"},

},
"edges": [

["sid_0.eid_0", "sid_1.eid0", {}],
["sid_0.eid_1", "sid_1.eid0", {}],

],
}

If entities is a single string (e.g., sid_1.eid_0), return an object containing all entities related to that entity:

{
"sid_0.eid_0": {"type": "A"},
"sid_0.eid_1": {"type": "B"},

}

If entities is a list of entity IDs (e.g., ["sid_0.eid_0", "sid_0.eid_1"]), return an object mapping each entity to
an object of related entities:

{
"sid_0.eid_0": {

"sid_1.eid_0": {"type": "B"},
},

(continues on next page)
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(continued from previous page)

"sid_0.eid_1": {
"sid_1.eid_1": {"type": "B"},

},
}

Example

Request:

["get_related_entities", [["grid_sim_0.node_0", "grid_sim_0.node_1"]] {}]

Reply:

{
"grid_sim_0.node_0": {

"grid_sim_0.branch_0": {"type": "Branch"},
"pv_sim_0.pv_0": {"type": "PV"}

},
"grid_sim_0.node_1": {

"grid_sim_0.branch_0": {"type": "Branch"}
}

}

get_data

["get_data", [attrs], {}] -> data

Get the data for the requested attributes in attrs.

attrs is an object of (fully qualified) entity IDs mapping to lists of attribute names:

{
"sim_id.eid_1": ["attr_1", "attr_2", ...],
...

}

The return value is an object mapping the input entity IDs to data objects mapping attribute names to there respective
values:

{
"sim_id.eid_1: {

"attr_1": "val_1",
"attr_2": "val_2",
...

},
...

}
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Example

Request:

["get_data", [{"grid_sim_0.branch_0": ["I"]}], {}]

Reply:

{
"grid_sim_0.branch_0": {

"I": 42.5
}

}

set_data

["set_data", [data], {}] -> null

Set data as input data for all affected simulators.

data is an object mapping source entity IDs to objects which in turn map destination entity IDs to objects of attributes
and values ({"src_full_id": {"dest_full_id": {"attr1": "val1", "attr2": "val2"}}})

Example

Request:

[
"set_data",
[{

"mas_0.agent_0": {"pvsim_0.pv_0": {"P_target": 20,
"Q_target": 3.14}},

"mas_0.agent_1": {"pvsim_0.pv_1": {"P_target": 21,
"Q_target": 2.718}}

}],
{}

]

Reply:
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null

set_event

["set_event", [time], {}] -> null

Request an event/step for itself at time time.

Example

Request:

["set_event", [5], {}]

Reply:

null

6.3 The high-level API

Currently, there are high-level APIs for Python, Java, C#, and MatLab.

6.3.1 Installation

The Python implementation of the mosaik API is available as a separate package an can easily be installed via pip:

pip install mosaik-api

It supports Python 2.7, >= 3.3 and PyPy.

For the use of the Java-API please refer to the Java-tutorial.

6.3.2 Usage

You create a subclass of mosaik_api.Simulator which implements the four API calls init(), create(), step()
and get_data(). You can optionally override configure() and finalize(). The former allows you to handle ad-
ditional command line arguments that your simulator may need. The latter is called just before the simulator terminates
and allows you to perform some clean-up.

You then call mosaik_api.start_simulation() from your main() function to get everything set-up and running.
That function handles the networking as well as serialization and de-serialization of messages. Commands from the
low-level API are translated to simple function calls. The return value of these functions is used for the reply.

For example, the message

["create", [2, "Model", {"param1": 15, "param2": "spam"}]

will result in a call
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create(2, 'Model', param1=15, param2='spam')

API calls

class mosaik_api.Simulator(meta)
This is the base class that you need to inherit from and implement the API calls.

meta
Meta data describing the simulator (the same that is returned by init()).

{
'api_version': 'x.y',
'type': 'time-based'|'event-based'|'hybrid',
'models': {

'ModelName': {
'public': True|False,
'params': ['param_1', ...],
'attrs': ['attr_1', ...],
'any_inputs': True|False,
'trigger': ['attr_1', ...],
'non-persistent': ['attr_2', ...],

},
...

},
'extra_methods': [

'do_cool_stuff',
'set_static_data'

]
}

The api_version is a string that defines which version of the mosaik API the simulator implements. Since
mosaik API version 2.3, the simulator’s major version (“x”, in the snippet above) has to be equal to mosaik’s.
Mosaik will cancel the simulation if a version mismatch occurs.

The type defines how the simulator is advanced through time and whether its attributes are persistent in
time or transient.

models is a dictionary describing the models provided by this simulator. The entry public determines
whether a model can be instantiated by a user (True) or if it is a sub-model that cannot be created directly
(False). params is a list of parameter names that can be passed to the model when creating it. attrs is a
list of attribute names that can be accessed (reading or writing). If the optional any_inputs flag is set to
true, any attributes can be connected to the model, even if they are not attrs. This may, for example, be
useful for databases that don’t know in advance which attributes of an entity they’ll receive. trigger is a list
of attribute names that cause the simulator to be stepped when another simulator provides output which is
connected to one of those.

extra_methods is an optional list of methods that a simulator provides in addition to the standard API calls
(init(), create() and so on). These methods can be called while the scenario is being created and can
be used for operations that don’t really belong into init() or create().

mosaik
An RPC proxy to mosaik.

time_resolution
The time resolution of the scenario.
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init(sid, time_resolution=1.0, **sim_params)

Initialize the simulator with the ID sid and pass the time_resolution and additional parameters
(sim_params) sent by mosaik. Return the meta data meta.

If your simulator has no sim_params, you don’t need to override this method.

create(num, model, **model_params)
Create num instances of model using the provided model_params.

num is an integer for the number of model instances to create.

model needs to be a public entry in the simulator’s meta['models'].

model_params is a dictionary mapping parameters (from meta['models'][model]['params']) to their
values.

Return a (nested) list of dictionaries describing the created model instances (entities). The root list must
contain exactly num elements. The number of objects in sub-lists is not constrained:

[
{

'eid': 'eid_1',
'type': 'model_name',
'rel': ['eid_2', ...],
'children': [

{'eid': 'child_1', 'type': 'child'},
...

],
},
...

]

The entity ID (eid) of an object must be unique within a simulator instance. For entities in the root list,
type must be the same as the model parameter. The type for objects in sub-lists may be anything that can be
found in meta['models']. rel is an optional list of related entities; “related” means that two entities are
somehow connect within the simulator, either logically or via a real data-flow (e.g., grid nodes are related
to their adjacent branches). The children entry is optional and may contain a sub-list of entities.

setup_done()
Callback that indicates that the scenario setup is done and the actual simulation is about to start.

At this point, all entities and all connections between them are know but no simulator has been stepped yet.

Implementing this method is optional.

Added in mosaik API version 2.3

step(time, inputs, max_advance)
Perform the next simulation step from time time using input values from inputs and return the new simula-
tion time (the time at which step() should be called again).

time and the time returned are integers. Their unit is arbitrary, e.g. seconds (from simulation start), but has
to be consistent among all simulators used in a simulation.

inputs is a dict of dicts mapping entity IDs to attributes and dicts of values (each simulator has to decide
on its own how to reduce the values (e.g., as its sum, average or maximum):
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{
'dest_eid': {

'attr': {'src_fullid': val, ...},
...

},
...

}

max_advance tells the simulator how far it can advance its time without risking any causality error, i.e. it
is guaranteed that no external step will be triggered before max_advance + 1, unless the simulator activates
an output loop earlier than that. For time-based simulators (or hybrid ones without any triggering input)
max_advance is always equal to the end of the simulation (until).

get_data(outputs)
Return the data for the requested attributes in outputs

outputs is a dict mapping entity IDs to lists of attribute names whose values are requested:

{
'eid_1': ['attr_1', 'attr_2', ...],
...

}

The return value needs to be a dict of dicts mapping entity IDs and attribute names to their values:

{
'eid_1: {

'attr_1': 'val_1',
'attr_2': 'val_2',
...

},
...
'time': output_time (for event-based sims, optional)

}

Time-based simulators have set an entry for all requested attributes, whereas for event-based and hybrid
simulators this is optional (e.g. if there’s no new event). Event-based and hybrid simulators can optionally
set a timing of their non-persistent output attributes via a time entry, which is valid for all given (non-
persistent) attributes. If not given, it defaults to the current time of the step. Thus only one output time is
possible per step. For further output times the simulator has to schedule another self-step (via the step’s
return value).

configure(args, backend, env)
This method can be overridden to configure the simulation with the command line args as created by docopt.

backend and env are the simpy.io backend and environment used for networking. You can use them to start
extra processes (e.g., a web server).

The default implementation simply ignores them.

finalize()
This method can be overridden to do some clean-up operations after the simulation finished (e.g., shutting
down external processes).

The mosaik-api package provides an example simulator that demonstrates how the API can be implemented.
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Asynchronous requests

The asynchronous requests can be called via the MosaikRemote proxy self.mosaik from within step(), except for
set_data() which has to be called from another thread/process (see below). They don’t return the actual results but
an event (similar to a future of deferred). The event will eventually hold the actual result. To wait for that result to
arrive, you simply yield the event, e.g.:

def step(self, time, inputs, max_advance):
progress = yield self.mosaik.get_progress()
# ...

MosaikRemote.get_progress()
Return the current simulation progress from sim_progress.

MosaikRemote.get_related_entities(entities=None)
Return information about the related entities of entities.

If entities omitted (or None), return the complete entity graph, e.g.:

{
'nodes': {

'sid_0.eid_0': {'type': 'A'},
'sid_0.eid_1': {'type': 'B'},
'sid_1.eid_0': {'type': 'C'},

},
'edges': [

['sid_0.eid_0', 'sid_1.eid0', {}],
['sid_0.eid_1', 'sid_1.eid0', {}],

],
}

If entities is a single string (e.g., sid_1.eid_0), return a dict containing all entities related to that entity:

{
'sid_0.eid_0': {'type': 'A'},
'sid_0.eid_1': {'type': 'B'},

}

If entities is a list of entity IDs (e.g., ['sid_0.eid_0', 'sid_0.eid_1']), return a dict mapping each entity
to a dict of related entities:

{
'sid_0.eid_0': {

'sid_1.eid_0': {'type': 'B'},
},
'sid_0.eid_1': {

'sid_1.eid_1': {'type': 'B'},
},

}

MosaikRemote.get_data(attrs)
Return the data for the requested attributes attrs.

attrs is a dict of (fully qualified) entity IDs mapping to lists of attribute names ({'sid/eid': ['attr1',
'attr2']}).
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The return value is a dictionary, which maps the input entity IDs to data dictionaries, which in turn map attribute
names to their respective values: ({'sid/eid': {'attr1': val1, 'attr2': val2}}).

MosaikRemote.set_data(data)
Set data as input data for all affected simulators.

data is a dictionary mapping source entity IDs to destination entity IDs with dictionaries of attributes and values
({'src_full_id': {'dest_full_id': {'attr1': 'val1', 'attr2': 'val2'}}}).

MosaikRemote.set_event(event_time)
Schedules an event/step at simulation time event_time.

The mosaik-api package provides an example “multi-agent system” that demonstrates how asynchronous requests can
be implemented.

Starting the simulator

To start your simulator, you just need to create an instance of your Simulator sub-class and pass it to
start_simulation():

mosaik_api.start_simulation(simulator, description='', extra_options=None)
Start the simulation process for simulation.

simulation is the instance of your API implementation (see Simulator).

description may override the default description printed with the help on the command line.

extra_option may be a list of options for docopt (example: ['-e, --example Enable example mode']).
Commandline arguments are passed to Simulator.configure() so that your API implementation can handle
them.

Here is an example with a bit more context:

import mosaik_api

example_meta = {
'type': 'time-based',
'models' {

'A': {
'public': True,
'params': ['init_val'],
'attrs': ['val_out', 'dummy_out'],

},
}

}

class ExampleSim(mosaik_api.Simulator):
def __init__(self):

super().__init__(example_meta)

sim_name = 'ExampleSimulation'

def configure(self, args, backend, env):
# Here you could handle additional command line arguments

(continues on next page)
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(continued from previous page)

def init(self, sid):
# Initialize the simulator
return self.meta

# Implement the remaining methods (create, step, get_data, ...)

def main():
import sys

description = 'A simple example simulation for mosaik.'
extra_options = [
'--foo Enable foo',
'--bar BAR The bar parameter',

]

return mosaik_api.start_simulation(ExampleSim(), description, extra_options)

if __name__ == '__main__':
sys.exit(main())
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CHAPTER

SEVEN

SCENARIO DEFINITION

Modeling or composing a scenario in mosaik comprises three steps:

1. Starting simulators,

2. Instantiating models within the simulators, and

3. Connecting the model instances of different simulators to establish the data flow between them.

This page will show you how to create simple scenarios in these three steps. It will also provide some recipes that allow
you to create more complex scenarios.

7.1 The setup

The central class for creating scenarios is mosaik.scenario.World (for your convenience, you can also import World
directly from mosaik). This class stores all data and state that belongs to your scenario and its simulation. It also
provides various methods that allow you to start simulators and establish the data flows between them.

In this tutorial, we’ll create a very simple scenario using the example simulation that is provided with the Python
implementation of the simulator API.

We start by importing the mosaik package and creating a World instance:

>>> import mosaik
>>>
>>> sim_config = {
... 'ExampleSim': {'python': 'example_sim.mosaik:ExampleSim'},
... }
>>>
>>> world = mosaik.World(sim_config)

As we start simulator instances by using world, it needs to know what simulators are available and how to start them.
This is called the sim config and is a dict that contains every simulator we want to use together with some information
on how to start it.

In our case, the only simulator is the ExampleSim. It will be started by importing the module example_sim.mosaik
and instantiating the class ExampleSim. This is only possible with simulators written in Python 3. You can also let
mosaik start simulator as external processes or let it connect to already running processes. The simulator manager docs
explain how this all works and give you some hints when to use which method of starting a simulator.

In addition to the sim config you can optionally pass another dictionary to World in order to overwrite some general
parameters for mosaik (e.g., the host and port number for its network socket or timeouts). Usually, the defaults work
just well.
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Via the time_resolution parameter you can set a global time resolution for the scenario, which will be passed to each
simulator as keyword argument via the init function (see API init). It tells each simulator how to translate mosaik’s
integer time to simulated time (in seconds from simulation start). It has to be a float and it defaults to 1..

If you set the debug flag to True an execution graph will be created during the simulation. This may be useful for
debugging and testing. Note, that this increases the memory consumption and simulation time.

There are two more technical parameters: You can set the cache flag to False if the average step size of the simulators
is orders of magnitudes larger than the time resolution, i.e. a time resolution of microseconds where the typical step
size is in the seconds range. This will considerably reduce the simulation time.

Via max_loop_iterations you can limit the maximum iteration count within one time step for same-time loops. It’s
default value is 100.

7.2 Starting simulators

Now that the basic set-up is done, we can start our simulators:

>>> simulator_0 = world.start('ExampleSim', step_size=2)
Starting "ExampleSim" as "ExampleSim-0" ...
>>> simulator_1 = world.start('ExampleSim')
Starting "ExampleSim" as "ExampleSim-1" ...

To start a simulator, we call World.start() and pass the name of the simulator. Mosaik looks up that name in its sim
config, starts the simulator for us and returns a ModelFactory. This factory allows us to instantiate simulation models
within that simulator.

In addition to the simulator name, you can pass further parameters for the simulators. These parameters are passed to
the simulator via the init() API call.

7.3 Instantiating simulation models

Simulators specify a set of public models in their meta data (see init() API call). These models can be accessed with
the ModelFactory that World.start() returns as if they were normal Python classes. So to create one instance of
ExampleSim’s model A we just write:

>>> a = simulator_0.A(init_val=0)

This will create one instance of the A simulation model and pass the model parameter init_val=0 to it (see create()
API call). Lets see what it is that gets returned to us:

>>> print(a)
Entity('ExampleSim-0', '0.0', 'ExampleSim', A)
>>> a.sid, a.eid, a.full_id
('ExampleSim-0', '0.0', 'ExampleSim-0.0.0')
>>> a.sim_name, a.type
('ExampleSim', 'A')
>>> a.children
[]

A model instances is represented in your scenario as an Entity. The entity belongs to the simulator ExampleSim-0,
has the ID 0.0 and its type is A. The entity ID is unique within a simulator. To make it globally unique, we prepend
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it with the simulator ID. This is called the entity’s full ID (see Entity.full_id). You can also get a list of its child
entities (which is empty in this case).

In order to instantiate multiple instances of a model, you can either use a simple list comprehension (or for loop) or
call the static method create() of the model:

>>> a_set = [simulator_0.A(init_val=i) for i in range(2)]
>>> b_set = simulator_1.B.create(3, init_val=1)

The list comprehension is more verbose but allows you to pass individual parameter values to each instance. Using
create() is more concise but all three instance will have the same value for init_val. In both cases you’ll get a list of
entities (aka entity sets).

7.4 Setting initial events

Time-based (and hybrid) simulators are automatically scheduled for time step 0, and will organize their scheduling until
the simulation’s end themselves afterward. For event-based simulators this is not the case, as they might only want to
be stepped if an event is created by another simulator for example. Therefore you might need to set initial events for
some event-based ones via World.set_initial_event(), which sets an event for time 0 by default, or at later times
if explicitly stated:

>>> world.set_initial_event(a.sid)
>>> world.set_initial_event(b.sid, time=3)

7.5 Connecting entities

If we would now run our simulation, both, simulator_0 and simulator_1 would run in parallel and never exchange any
data. To change that, we need to connect the models providing input data to entities requiring this data. In our case, we
will connect the val_out attribute of the A instances with the val_in attribute of the B instances:

>>> a_set.insert(0, a) # Put our first A instance to the others
>>> for a, b in zip(a_set, b_set):
... world.connect(a, b, ('val_out', 'val_in'))

The method World.connect() takes the source entity, the destination entity and an arbitrary amount of (source at-
tribute, dest. attribute) tuples. If the name of the source attributes equals that of the destination attribute, you can
alternatively just pass a single string (e.g., connect(a, b, 'attr')).

You can only connect entities that belong to different simulators with each other (that’s why we created two instances
of the ExampleSim).

You are also not allowed to create circular dependencies via standard connections only (e.g., connect a to b and then
connect b to a). There are several ways to allow a bidirectional or cyclic exchange of data, which is required for things
like control strategies, e.g. via time-shifted or weak connections. See section How to achieve cyclic data-flows for
details.
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7.6 Running the simulation

When all simulators are started, models are instantiated and connected, we can finally run our simulation:

>>> world.run(until=10)
Starting simulation.
Simulation finished successfully.

This will execute the simulation from time 0 until we reach the time until (in simulated time units). The scheduler
section explains in detail what happens when you call run().

To wrap it all up, this is how our small example scenario finally looks like:

# Setup
import mosaik

sim_config = {
'ExampleSim': {'python': 'example_sim.mosaik:ExampleSim'},

}

world = mosaik.World(sim_config)

# Start simulators
simulator_0 = world.start('ExampleSim', step_size=2)
simulator_1 = world.start('ExampleSim')

# Instantiate models
a_set = [simulator_0.A(init_val=i) for i in range(3)]
b_set = simulator_1.B.create(3, init_val=1)

# Connect entities
for a, b in zip(a_set, b_set):

world.connect(a, b, ('val_out', 'val_in'))

# Run simulation
world.run(until=10)

7.7 How to achieve cyclic data-flows

Bi-directional (or cyclic) data-flows can occur easily in many scenarios, e.g. when you want to integrate control strate-
gies. In this case you have to explicitly define in which order the simulators have to be stepped in case they are scheduled
at the same time step simultaneously. Otherwise the simulation would get stuck in a dead-lock. Therefore this trivial
approach is not allowed in mosaik:

# Send battery's active power value to the controller
world.connect(battery, controller, 'P')
# Controller sends back a schedule to the battery
world.connect(controller, battery, 'schedule')

The problem with this is that mosaik cannot know whether to compute battery.P or controller.schedule first.

There are different ways to solve this problem, depending of the stepping type of your simulators:
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7.7.1 Time-based

For time-based simulators the easiest way is to indicate explicitly that the output of at least one simulator (e.g. the
schedule of the controller)is to be used for time steps afterwards (here by the battery) via the time_shifted flag:

world.connect(battery, controller, 'P')
world.connect(controller, battery, 'schedule', time_shifted=True,

initial_data={'schedule': initial_schedule})

As for the first step this data cannot be provided yet, you have to set it via the initial_data argument. This example
would result in a sequential execution of the two simulators. If you set the time_shifted flag for both connections, you
get a parallel execution.

The other option to resolve the cycle is to use asynchronous requests. For this you only connect the battery’s P to the
controller and let the control strategy set the new schedule via the asynchronous request set_data. To indicate this in
your scenario, you set the async_request flag of World.connect() to True:

world.connect(battery, controller, 'P', async_requests=True)

This way, mosaik will push the value for P from the battery to the controller. It will then wait until the controller’s step
is done before the next step for the battery will be computed.

The advantage of this approach is that the call of set_data is optional, so you don’t need to send a schedule on every
step if there’s no new schedule. The disadvantage is that you have to implement the set_data call within the simulator
with the specific destination, making it less modular.

The step implementation of the controller could roughly look like this:

class Controller(Simulator):

def step(self, t, inputs):
schedule = self._get_schedule(inputs)
yield self.mosaik.set_data(schedule)
return t + self.step_size

7.7.2 Event-based

For cyclic dependencies of event-based simulators you have to set one (and only one) connection to weak, analogous
to the time_shifted connections. This allows mosaik to create a topological ranking of the simulators which is used
to resolve eventual deadlocks (when two or more simulators have scheduled steps at the same time). In contrast to
the time-shifted connections, weakly connected output can also be valid/used at the same point in time. This enables
algebraic loops within one time step for example. You just have to make sure that you don’t construct infinite loops.
See section Same-time Loops for details.

7.8 How to filter entity sets

When you create large-scale scenarios, you often work with large sets of entities rather than single ones. This section
provides some examples how you can extract a sub-set of entities from a larger entity set based on arbitrary criteria.

Let’s assume that we have created a power grid with mosaik-pypower:

grid = pypower.Grid(gridfile='data/grid.json').children
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Since mosaik-pypower’s Grid entity only serves as a container for the buses and branches of our power grid, we directly
bound its children to the name grid. So grid is now a list containing a RefBus entity and multiple Transformer, PQBus
and Branch entities.

So how do we get a list of all transformers? This way:

transformers = [e for e in grid if e.type == 'Transformer']

How do we get the single RefBus? This way:

refbus = [e for e in grid if e.type == 'RefBus'][0]

Our PQBus entities are named like Busbar_<i> and ConnectionPoint_<i> to indicate to which buses we can connect
consumers and producers and to which we shouldn’t connect anything. How do we get a list of all ConnectionPoint
buses? We might be tempted to do it this way:

conpoints = [e for e in grid if e.eid.startswith('ConnectionPoint_')]

The problem in this particular case is, that mosaik-pypower prepends a “grid ID” to each entity ID, because it can handle
multiple grid instances at once. So our entity IDs are actually looking like this: <grid_idx>-ConnectionPoint_<i>.
Using regular expressions, we can get our list:

import re

regex_conpoint = re.compile(r'\d+-ConnectionPoint_\d+')

conpoints = [e for e in grid if regex_conpoint.match(e.eid)]

If we want to connect certain consumers or producers to defined nodes in our grid (e.g., your boss says: “This PV
module needs to be connected to ConnectionPoint_23!”), creating a dict instead of a list is a good idea:

remove_grididx = lambda e: e.eid.split('-', 1)[1] # Little helper function
cps_by_name = {remove_grididx(e): e for e in grid if regex_conpoint.match(e)}

This will create a mapping where the string 'ConnectionPoint_23' maps to the corresponding Entity instance.

This was just a small selection of how you can filter entity sets using list/dict comprehensions. Alternatively, you can
also use the filter() function or a normal for loop. You should also take at look at the itertools and functools
modules. You’ll find even more functionality in specialized packages like PyToolz.

7.9 How to create user-defined connection rules

The method World.connect() allows you to only connect one pair of entities with each other. When you work with
larger entity sets, you might not want to connect every entity manually, but use functions that take to sets of entities
and connect them with each other based on some criteria.

The most common case is that you want to randomly connect the entities of one set to another, for example, when you
distribute a number of PV modules over a power grid.

For this use case, mosaik provides mosaik.util.connect_randomly(). It takes two sets and connects them either
evenly or purely randomly:

world = mosaik.World(sim_config)

grid = pypower.Grid(gridfile=GRID_FILE).children
(continues on next page)
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pq_buses = [e for e in grid if e.type == 'PQBus']
pvs = pvsim.PV.create(20)

# Assuming that len(pvs) < len(pq_buses), this will
# connect 0 or 1 PV module to each bus:
mosaik.util.connect_randomly(world, pvs, pq_buses, 'P')

# This will distribute the PV modules purely randomly, but every
# bus will have at most 3 modules connected to it.
mosaik.util.connect_randomly(world, pvs, pq_buses, 'P',

evenly=False, max_connects=3)

Another relatively common use case is connecting a set of entities to one other entity, e.g., when you want to connect
a number of controllable energy producers to a central scheduler. For this use case, mosaik provides mosaik.util.
connect_many_to_one()

...
pvs = pvsim.PV.create(30)
chps = chpsim.CHP.create(20)
controller = cs.Scheduler()

# Connect all producers to the controller, remember to set the
# "async_requests" flag.
connect_many_to_one(world, chain(pvs, chps), controller, 'P',

async_requests=True)

Connection rules are oftentimes highly specific for a project. connect_randomly() and connect_many_to_one()
are currently the only functions that are useful and complicated enough to ship it with mosaik. But writing your own
connection method is not that hard, as you can see in the connect_many_to_one example:

from itertools import chain

def connect_many_to_one(world, src_set, dest_entity, *attrs,
async_requests=False):

for src_entity in src_set:
world.connect(src_entity, dest_entity, *attrs,

async_requests=async_requests)

7.10 How to retrieve static data from entities

Sometimes, the entities don’t contain all the information that you need in order to decide which entity connect to which,
but your simulation model could provide that data. An example for this might be the maximum amount of active power
that a producer is able to produce.

Mosaik allows you to query a simulator for that data during composition time via World.get_data():

>>> example_simulator = world.start('ExampleSim')
Starting "ExampleSim" as "ExampleSim-2" ...
>>> entities = example_simulator.A.create(3, init_val=42)
>>> data = world.get_data(entities, 'val_out')

(continues on next page)
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>>> data[entities[0]]
{'val_out': 42}

The entities that you pass to this function don’t need to belong to the same simulator (instance) as long as they all can
provide the required attributes.

7.11 How to access topology and data-flow information

The World contains two networkx Graphs which hold information about the data-flows between simulators and the
simulation topology that you created in your scenario. You can use these graphs, for example, to export the simulation
topology that mosaik created into a custom data or file format.

World.df_graph is the directed dataflow graph for your scenarios. It contains a node for every simulator that you
started. The simulator ID is used to label the nodes. If you established a data-flow between two simulators (by con-
necting at least two of their entities), a directed edge between two nodes is inserted. The edges contain a list of the
data-flows as well as the async_requests, time_shifted, and weak flags (see How to achieve cyclic data-flows) and the
trigger and pred_waiting flags.

The data-flow graph may, for example, look like this:

world.df_graph.node == {
'PvSim-0': {},
'PyPower-0': {},

}
world.df_graph.edge == {

'PvSim-0': {'PyPower-0': {
'async_requests': False,
'dataflows': [

('PV_0', 'bus_0', ('P_out', 'P'), ('Q_out', 'Q')),
('PV_1', 'bus_1', ('P_out', 'P'), ('Q_out', 'Q')),

],
}},

}

World.entity_graph is the undirected entity graph. It contains a node for every entity. The full entity ID ('sim_id.
entity_id') is used as node label. Every node also stores the simulator name and entity type. An edge between two
entities is inserted

• if they are somehow related within a simulator (e.g., a PyPower branch is related to the two PyPower buses to
which it is adjacent) (see create); or

• if they are connected via World.connect().

The entity graph may, for example, look like this:

world.entity_graph.node == {
'PvSim_0.PV_0': {'sim': 'PvSim', 'type': 'PV'},
'PvSim_0.PV_1': {'sim': 'PvSim', 'type': 'PV'},
'PyPower_0.branch_0': {'sim': 'PyPower', 'type': 'Branch'},
'PyPower_0.bus_0': {'sim': 'PyPower', 'type': 'PQBus'},
'PyPower_0.bus_1': {'sim': 'PyPower', 'type': 'PQBus'},

}
world.entity_graph.edge == {

(continues on next page)
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'PvSim_0.PV_0': {'PyPower_0.bus_0': {}},
'PvSim_0.PV_1': {'PyPower_0.bus_1': {}},
'PyPower_0.branch_0': {'PyPower_0.bus_0': {}, 'PyPower_0.bus_1': {}},
'PyPower_0.bus_0': {'PvSim_0.PV_0': {}, 'PyPower_0.branch_0': {}},
'PyPower_0.bus_1': {'PvSim_0.PV_1': {}, 'PyPower_0.branch_0': {}},

}

The get_related_entities API call also uses and returns (parts of) the entity graph. So you can access it in your scenario
definition as well as from with a simulator, control strategy or monitoring tool.

Please consult the networkx documentation for more details about working with graphs and directed graphs.

7.12 How to destroy a world

When you are done working with a world, you should shut it down properly:

>>> world.shutdown()

This will, for instance, close mosaik’s socket and allows new World instances to reuse the same port again.

World.run() automatically calls World.shutdown() for you.

7.13 How to do real-time simulations

It is very easy to do real-time (or “wall-clock time”) simulations in mosaik. You just pass an rt_factor to World.run()
to enable it:

world.run(until=10, rt_factor=1)

A real-time factor of 1 means, that 1 simulation time unit (usually a simulation second) takes 1 second of real time.
Thus, if you set the real-time factor to 0.5, the simulation will run twice as fast as the real time. If you set it to 1/60,
one simulated minute will take one real-time second.

It may happen that the simulators are too slow for the real-time factor chosen. That means, they take longer than, e.g.,
one second to compute a step when a real-time factor of one second is set. If this happens, mosaik will by default just
print a warning message to stdout. However, you can also let your simulation crash in this case by setting the parameter
rt_strict to True. Mosaik will then raise a RuntimeError if your simulation is too slow:

world.run(until=10, rt_factor=1/60, rt_strict=True)

7.14 How to call extra methods of a simulator

A simulator may optionally define additional API methods (see init) that you can call from your scenario. These
methods can implement operations, like setting some static data to a simulator, which don’t really fit into init() or
create().

These methods are exposed via the model factory that you get when you start a simulator. In the following example,
we’ll call the example_method() that the example simulator shipped with the mosaik Python API:
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>>> world = mosaik.World({'ExampleSim': {
... 'python': 'example_sim.mosaik:ExampleSim'}})
>>> es = world.start('ExampleSim')
Starting "ExampleSim" as "ExampleSim-0" ...
>>>
>>> # Now brace yourself ...
>>> es.example_method(23)
23
>>>
>>> world.shutdown()
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CHAPTER

EIGHT

THE SIMULATOR MANAGER

The simulator manager (or just sim manager) is responsible for starting and handling the external simulator processes
involved in a simulation as well as for the communication with them.

Usually, these simulators will be started as separate sub-processes which will then connect to mosaik via network
sockets. This has two benefits:

1. Simulators can be written in any language.

2. Simulation steps can be performed in parallel, if two processes don’t depend on each others data.

Simulators written in Python 3 can, for performance reasons, be imported and executed like normal Python modules.
This way, all Sim API calls will be plain functions calls without the overhead of network communication and message
(de)serialization. However, since Python only runs in one thread at a time, this will also prevent parallel execution of
simulators.

When a (Python 3) simulator is computationally inexpensive, running it in-process may give you good results. If it
performs a lot of expensive computations, it may be better to start separate processes which can then do these compu-
tations in parallel. In practice, you should try and profile both ways in order to get the maximum performance out of
it.

Sometimes, both ways won’t work because you simply cannot start the simulator process by yourself. This might be
the reason for hardware-in-the-loop or if a simulator needs to run on a separate machine. In these cases, you can simply
let mosaik connect to a running instance of such a simulator.

Internally, all three kinds of simulator processes (in-process with mosaik, started by mosaik, connected to by mosaik)
are represented by SimProxy objects so that they all look the same to the other components of mosaik:
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The sim manager gets its configuration via the World’s sim_config argument. The sim_config is a dictionary containing
simulator names and description of how to start them:

>>> import mosaik
>>>
>>> sim_config = {
... 'SimA': {
... 'python': 'package.module:SimClass',
... },
... 'SimB': {
... 'cmd': 'java -jar simB.jar %(addr)s',
... 'cwd': 'simB/dist/',
... },
... 'SimC': {
... 'connect': 'localhost:5678',
... },
... }
>>>
>>> world = mosaik.World(sim_config)
>>> world.shutdown()

In the example above, we declare three different simulators. You can freely choose a name for a simulator. Its config-
uration should either contain a python, cmd or connect entry:

Since mosaik 2.3.0 it is possible to pass environment variables to sub-processes. Using the key env in sim_config
allows you to set new environment variables. That could look like this:

>>> import mosaik
>>>
>>> sim_config = {
... 'SimA': {
... 'python': 'package.module:SimClass',
... 'env': {
... 'PYTHONPATH': 'src/',

(continues on next page)
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... },

... },

... }
>>>
>>> world = mosaik.World(sim_config)
>>> world.shutdown()

python This tells mosaik to run the simulator in process. As a value, you need to specify the module and class name
of the simulator separated by a colon. In the example, mosaik will import package.module and instantiate
sim = package.module.SimClass(). This only works for simulators written in Python 3.

cmd This tells mosaik to execute the specified command cmd in order to start a new sub-process for the simulator.

You can use the placeholder %(python)s to use the same Python interpreter and virtualenv that mosaik currently
uses (see sys.executable).

In order to create a socket connection to mosaik the simulator needs to know the address of mosaik’s server
socket. Mosaik will pass this address (in the form host:port) as a command line argument, so you need to
include the placeholder %(addr)s in your command. Mosaik will replace this with the actual address.

You can optionally specify a current working directory (cwd). If it is present, mosaik will change to that directory
before executing cmd. Its default value is '.'.

In our example, mosaik would execute:

$ cd simB/java
$ java -jar simB.jar localhost:5555

in order to start SimB.

Note: Please use for the cwd command and for paths in the cmd call only the UNIX/Linux path notation with slashes
even if you are using windows. Do not use backslashes or double backslashes.

connect This tells mosaik to establish a network connection to a running simulator instance. It will simply connect to
host:port – localhost:5678 for SimC
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CHAPTER

NINE

SCHEDULING AND SIMULATION EXECUTION

When you defined your scenario and start the simulation, mosaik’s scheduler becomes active. It manages the execution
of all involved simulators, keeps them in sync and handles the data-flows between them.

Mosaik runs the simulation by stepping simulators through time. Mosaik uses integers for the representation of time
(to avoid rounding errors etc.). It’s unit (to how many seconds one integer step corresponds) can be defined in the
scenario, and is passed to every simulation component via the init function as key-word parameter time_resolution. It’s
a floating point number and defaults to 1..

9.1 Time paradigms

There are various paradigms for time in simulations, discrete time, continuous time, discrete event, to name the probably
most common ones. Mosaik supports discrete-time and discrete-event simulations, including the combination of both.
As these concepts are not always strictly distinguishable, we use a slightly different notation for the simulator’s types,
namely time-based, event-based, and hybrid. It’s not always obvious which type of simulator is the most appropriate
one for a simulator, and in many cases both would be possible. As a rough guide we could say:

Time-based simulators are more related to the physical world, where the state, inputs and outputs of a system are
continuous (e.g. active power of a PV module). The mapping of those continuous signals to discrete points in time
is then somewhat arbitrary (and depends on the desired precision and the available computing resources). The lower
limit for the temporal resolution in a mosaik scenario is the unit assigned to the integer time steps.

Event-based simulators are related to the cyber world, where the state(s) of a system can instantaneously change, and
inputs and outputs also occur at a specific point in time (example: sending/receiving of messages in a communication
simulation). The native way of stepping through time would than be to just jump between all occurring events. In a
mosaik simulation the time of the events have to be rounded to the mosaik’s integer time steps.

Hybrid simulators can represent any kind of combined systems with both continuous and event-type components.

9.2 Advancing through time

Mosaik tracks the current simulation time for every simulator individually. How simulators step through the time from
simulation start to end depends on their stepping type described above:
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9.2.1 Time-based simulators

When the simulation starts, all time-based (and hybrid) simulators are at time 0. When it asks a simulator to perform
its next step, it passes its current simulation time tnow to it. After its step, the simulator returns the time at which it
wants to perform its next step (tnext). Thus, a simulator’s step size doesn’t need to be constant but can vary during the
simulation.

All data that a time-based simulator computes during a step is valid for the right-open interval [tnow, tnext) as shown in
the following figure.

Fig. 1: Schematic execution of a time-based simulator A. tnow, tnext and the validity interval for its first step 0 are shown.
The figure also shows that the step size of a simulator may vary during the simulation.

9.2.2 Event-based simulators

The stepping through time of event-based simulators is rather different. Event-based simulators are stepped at all times
an event is created at. These events can either be created by other simulators w are connected to this simulator via
providing the connected attribute, or the simulator can also schedule events for itself via the step function’s return
value. The output provided by event-based simulators is only valid for a specific point in time, by default for the
current time of the step, or for any later time if explicitly set via the (optional) output time. Providing the output
attributes is optional for event-based simulators. As consequence a simulator connected to a specific attribute is only
triggered/stepped if the output is actually provided. See the API description for implementation details. Event-based
simulators do not necessarily start at time 0, but whenever their first event is scheduled, either by other simulators or
via World.set_initial_event() from the scenario definition.

Fig. 2: Schematic execution of an event-based simulation. Depending on A’s actual output a step of B is triggered (or
not), at A’s step time or later. Simulator A also schedules itself.

Note that it is possible that a simulator is stepped several times at a specific point in time. See Same-time loops for
details.
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9.3 Synchronization and data-flows

If there are data-flows between two simulators (because you connected some of their entities), a simulator can only
perform a step if all input data has been computed.

Let’s assume we created a data-flow from a simulator A to a simulator B and B wants to perform a step from tnow(B).
Mosaik determines which simulators provide input data for B. This is only A in this example. In order to provide data
for B, A needs to step far enough to produce data for tnow(B), that means tnext(A) > tnow(B) as the following figure illustrates.

Fig. 3: (a) B cannot yet step because A has not progressed far enough yet (tnext(A) <= tnow(B)).
(b) B can perform its next step, because A now has progressed far enough (tnext(A) > tnow(B)).

If this condition is met for all simulators providing input for B, mosaik collects all input data for B that is valid at tnow(B)
(you could say it takes one snapshot of the global simulation state). It passes this data to B. Based upon this (and only
this) data, B performs its step [tnow(B), tnext(B)).

This is relatively easy to understand if A and B have the same step size, as the following figures shows:

If B had a larger step size then A, A would produce new data while B steps. B would still only use the data that was
valid at tnow(B), because it only “measures” its inputs once at the beginning of its step:

On the other hand, if A had a larger step size then B, we would reuse the same data from A multiple times as long as it
is valid:

The last two examples may look like special cases, but they actually arise from the approach explained above.
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Fig. 4: In this example, A and B have the same step size. Mosaik steps them in an alternating order starting with A,
because it provides the input data for B.

Fig. 5: In this example, B has a larger step size. It doesn’t consume all data that A produces, because it only gets data
once at the beginning of its step.

Fig. 6: In this example, A has a larger step size. B reuses the same data multiple times because it is still valid.
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9.3.1 How far is a simulator allowed to advance its time?

As described in the API documentation, mosaik tells the simulator each step how far it is allowed to advance its internal
simulation time via the max_advance argument. It is guaranteed that no step will be scheduled until then (inclusively),
unless the simulator activates a triggering dependency loop earlier than that. Mosaik deduces this from the simulation
topology and the progress of the simulators. Note that the simulator will not necessarily be stepped at max_advance +
1 as this will only happen if the predecessor actually provides the connected output attribute(s).

As time-based simulators (or hybrid ones without any triggering input) only decide themselves when they are stepped,
max_advance is always equal to the end of the simulation for those. But of course they will most likely miss some
updates of the input data if their step size is too large and not synchronized with their input providers. In order not to
miss any input update, you can change the type of the simulator to hybrid. Then the simulator will be stepped on each
update.

TODO: Add info for rt-simulations

9.3.2 How data flows through mosaik

After a simulator is done with its step, mosaik determines, based on the data-flows that you created in your scenario,
which data other simulators need from it. It makes a get_data() API call to the simulator and stores the data that this
call returns in an internal buffer. It also memorizes for which time this data is valid.

Before a simulator steps, mosaik determines in a similar fashion what input data the simulator needs. Mosaik checks
if all input-providing simulators have stepped far enough to (potentially) provide that data and waits otherwise. After
that all input data is collected and then passed to the inputs parameter of the step() API call.

It is important to understand that simulators don’t talk to each other directly but that all data flows through mosaik were
it can be cached and managed.

9.4 Cyclic data-flows

Sometimes the simulated system requires cyclic data-flows between components, e.g. a control mechanism (C) that
controls another entity (E) based on its state, e.g. by sending commands or a schedule.

It is not possible to perform both data-flows (the state from E to C and the commands/schedule from C to E) at the
same time because they depend on each other (yes, this is similar to the chicken or egg dilemma).

The cycle can be resolved by first stepping E (e.g., from t = 0 to t = 1). E’s state for that interval can then be used as
input for C ’s step for the same interval. The commands/schedule that C generates for E will then be used in E’s next
step. This results in a serial execution, also called Gauss-Seidel scheme.

This resolution of the cycle makes sense if you think how this would work in real life. The controller would measure
the data from the controlled unit at a certain point t. It would then do some calculation which take a certain amount of
time t which would be send to the controlled unit at t + t.

However, mosaik is not able to automatically resolve that cycle. That’s why you are not allowed to connect(E, C)
and connect(C, E) in a scenario. This can be done via the time-shifted connection connect(C, E, (‘c_out’,
‘a_in’), time_shifted=True, initial_data={‘c_out’: 0}), which tells mosaik that the output of C is to
be used for E’s next time step(s) afterwards. As for the first step (at time 0) this data cannot be provided yet, you have
to set it via the initial_data argument. In this case, the initial data for ‘a_in’ is 0.

Another way to resolve this cycle is to allow async. requests via the async_requests flag connect(E, C,
async_requests=True) and use the asynchronous callback set_data() in C’s step() implementation in order to
send the commands or schedule from C to E. The advantage of this approach is that the call of set_data is optional, i.e.
the commands or schedules don’t need to be sent on every step.
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Fig. 7: In this example, a controlled entity E provides state data to the controller C. The commands or schedule from
C is used by E in its next step.

If you set the time_shifted flag for both connections, the simulators can be executed in parallel (Jacobi scheme). Note
that a computationally parallel execution is only possible for simulators that are not run in-process.

Fig. 8: In this example, two entities are running in parallel. The outputs of each simulator are used by the other one in
its next step afterwards.

You can take a look at our discussion of design decisions for details.

9.4.1 Same-time (algebraic) loops

Loops which are closed by a weak connection can be run multiple times within the same mosaik time step, as weak
connections do not necessarily imply a temporal. This can be used for example to only advance the simulation time
when the state has converged to a stable solution. To activate (and also stay in) a same-time cycle, a simulator has to
provide its ‘cyclic’ attribute(s) via the get_data function and indicating as output time the current step time. To omit
the cycle the attribute(s) in the get_data’s return dictionary or indicating a time later than the step’s time.

To prevent the loop to be run infinite times, mosaik raises a runtime error when a certain number of iterations within one
time step has been reached. The default maximum iteration count is 100 and can be adjusted via the max_loop_iterations
parameter within the scenario definition if needed (see mosaik.scenario.World).
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Fig. 9: A same-time loop with three repetitions between simulator A and B.

9.5 Stepping and simulation duration

By now you should have a general idea of how mosaik handles data-flows between simulators. You should also have
the idea that simulators only perform a step when all input-providing simulators have stepped far enough. But what if
they don’t have any (connected) inputs? In this section you’ll learn about the algorithm that mosaik uses to determine
whether a simulator can be stepped or not.

This is how it works:

1. Should there be a next step at all? *

Yes: Go to step 2.

No: Stop the simulator.
* We’ll explain how to answer this question below.

2. Is a next step already scheduled, either self-scheduled via step or by triggering input?

Yes: Go to step 3.

No: Wait until a next step is set. Then go to step 3.

3. Have all dependent simulators stepped far enough?

Yes: Go to step 4.

No: Wait for all dependencies. Then go step 4.

4. Collect all required input data.

5. Send collected input data to simulator, perform the simulation step and eventually get the time of a next step.

6. Get all data from this simulator that are connected to other simulators and store it internally.

7. Notify other simulators that already wait for this simulator. If there’s any output which is connected to a triggering
input of another simulator, schedule new steps for it (at output time).

So how do we determine whether a simulator must perform another step or it is done?

When we start the simulation, we pass a time unto which our simulation should run (world.run(until=END)). Usu-
ally a simulator is done if the time of its next step is equal or larger then the value of until. This is, however, not true
for all simulators in a simulation. If no one needs the data of a simulator step, why perform this step?

So the actual algorithm is as follows:

If a simulator has no outgoing data-flows (no other simulator needs its data) it simulates until the condition tnext > tuntil
is met or none of the simulators which could trigger a step are running anymore.
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Fig. 10: Sim-process running for each simulator in parallel
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Else, if a simulator needs to provide data for other simulators, it keeps running until all of these simulators have stopped.
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CHAPTER

TEN

UPGRADING FROM MOSAIK 2 TO 3

Mosaik 3 has some new features which required some API changes. For the time being simulators implementing
mosaik-api 3 are still supported, but you will get a deprecation warning at the beginning. In case that you don’t want to
use any of the new features you could stay with mosaik 2. But otherwise the upgrade to mosaik 3 is quite easy, as you
will see in the following sections:

10.1 Component’s type

Simulation components now have a type (time-based, event-based, or hybrid) to indicate which simulation time
paradigm they implement. See details here. The type is set in the component’s meta data, which the component
returns to mosaik via the API’s init function.

10.2 Time resolution

A global time resolution is now defined for each scenario indicating how to translate mosaik’s integer time to simulated
time. It can be set at the instantiation of the simulation’s World in the setup of the scenario and is set to 1. by default.
It’s value is passed to the components via the init function.

10.3 Max_advance time

max_advance tells the simulator how far it can advance its time without risking any causality error, i.e. it is guaranteed
that no external step will be triggered before max_advance + 1. It is determined for each step and passed to the
component as third positional argument of the API’s init function.

10.4 Sticking with mosaik 2

In case that you don’t want to upgrade to mosaik 3, the mosaik dependency must be pinned to version 2.x.

When installing mosaik with pip, you get the latest mosaik 2.x version via:

pip install 'mosaik<3'

You can also specify this constraint in a requirements files:

mosaik<3
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Or in the install_requires list in a setup.py file:

setup(
...
install_requires=['mosaik<3'],
...

)

96 Chapter 10. Upgrading from mosaik 2 to 3



CHAPTER

ELEVEN

FAQ

This is a list of some questions we recently got. If you cannot find an answer for your questions here, you are welcome
to post it on our mailing list.

11.1 General questions

11.1.1 Are there graphical tools for scenario design?

Maverig, an environment for graphical analysis as well as scenario design has been developed and is currently in a pro-
totypical state. It may be used for demonstration purposes, but its maintenance and further development is not our top
priority right now. Please understand, if the installation guide is not up-to-date with the newest package versions. How-
ever, we argue that graphical tools are not feasible for the design of large and complex scenarios. For most applications
the more flexible scenario design by code is advantageous.

11.1.2 Is there a mosaik-Wiki?

We like Wikis but consider them the wrong tool for documenting software (and we are not alone with that).

There are a lot of other resources, though:

• All documentation is concentrated here, at Read the Docs.

• Source code and issues are managed by GitLab.

• Discussion takes place in our mailing list.

• News are spread through our blog.

There’s not much that a wiki could add here.

11.2 Coupling models with mosaik

11.2.1 Can I use continuous models with mosaik?

Yes. Since mosaik 2 you can even use a variable step size for your simulator that can dynamically change during the
simulation.
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11.2.2 Can I use mosaik only with Python programs?

No, mosaik can be used with any language that provides network sockets and ways to (de)serialize JSON.

Since implementing network event loops and message (de)serialization is repetitive work and unnecessary overhead,
we provide so called high-level APIs for certain languages that provide a base class that you can inherit and just need
to implement a few methods representing the API calls.

Currently, high-level API are available for Python, JAVA, and C#, but an implementation for C++ will follow soon.

11.2.3 Can I use my MATLAB/Simulink models with mosaik? How do I do it?

Yes, you can. We will provide an example soon. In the end, if you manage to let your model communicate via sockets
and are capable of serializing/deserializing JSON data objects you can use it with mosaik (see Can I use mosaik only
with Python programs? for details).

11.3 The mosaik demo

11.3.1 I can only see active power values in the web visualization. Does mosaik
also support reactive power values with PyPower?

Of course, it only depends on your models. The basic models distributed with mosaik 2 only produce active power
outputs (cos phi = 1), so we don’t display reactive power.

11.3.2 What are the power grid’s parameters? How are the cables’/lines’ parameters
formatted?

Check https://gitlab.com/mosaik/mosaik-pypower under “input file format”. Typically, line values are given in R per
km and X per km.

11.3.3 Port 8000 on my local machine is already in use. How can I see the visuali-
sation with WebVis?

Port 8000 is used as default when using WebVis. You can overwrite the default value in demo.py.

...
sim_config = {

...
'WebVis': {

'cmd': 'mosaik-web -s 0.0.0.0:8000 %(addr)s',
},

}
...
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12.1 Discussion of design decisions

On this page, we discuss some of the design decisions that we made. This should explain why some features are (not)
present and why they work the way that they work.

Note: For the sake of readability, some concepts are simplified in the following sections. For example, the snippet
connect(A, B) means we’e connecting some entities of a simulator A to some entities of simulator B; simulator and
entity are used as if they were the same concept; A.step() means, that mosaik calls the step() function of simulator/entity
A.

12.1.1 Circular data-flows

Circular data-flows were one of the harder problems to solve.

When you connect the entities of two simulators with each other, mosaik tracks the new dependency between these
simulators:

connect(A, B)

A would now provide input data for B. When mosaik runs the simulation, the step for a certain time t would first be
computed for A and then for B with the inputs of A.

In order to connect control strategies (like multi-agent systems) with to-be-controlled entities, you usually need a circu-
lar data-flow. The entity provides state information for the controller which in turn sends new commands or schedules
to the controlled entity. The naïve way of doing this would be:

connect(A, B, 'state')
connect(B, A, 'schedule')

A would receive schedules via the inputs of A.step(). In A.step(), it would compute new state information which mo-
saik would get via A.get_data(). Mosaik would forward this to the inputs of B.step(). B.step() would calculate some
schedules, which mosaik would again get via B.get_data() and pass to A.step() . . .

The question that arise here is: Which simulator do we step first – A or B? Mosaik has no clue. You could say that A
needs to step first, because the data-flow from A to B was established first. However, if you re-arrange your code and
(accidentally) flip both lines, you would get a different behavior and a very hard to find bug.
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What do we learn from that? We need to explicitly tell mosaik how to resolve these cycles and prohibit normal circular
data-flows as in the snippet above.

Mosaik provides two ways for this. The first is via time-shifted connections:

connect(A, B, 'state')
connect(B, A, 'schedule', time_shifted=True)

This tells mosaik how to resolve the cycle and throw an error if you accidentally flip both lines.

Theoretically, we could be done here. But we aren’t. The data-flows in the example above are passive, meaning that A
and B compute data hoping that someone will use them. This abstraction works reasonably well for normal simulation
models, but control mechanism usually have an active roll. They actively decide whether or not to send commands to
the entities they control.

Accordingly, mosaik provides ways for control mechanisms and monitoring tools to actively collect more data from
the simulation and set data to other entities. These means are implemented as asyncronous requests that a simulator
can perform during its step. Similar to the cyclic data-flows, this requires you to tell mosaik about it to prevent some
scheduling problems:

connect(A, B, async_requests=True)

This prevents A from stepping too far into the future so that B can get additional data from or set new data to A in
B.step().

Since you can set data via an asynchronous request, you can implement cyclic data-flows with it:

connect(A, B, 'state', async_requests=True)

The implementation of A.step() and A.get_data() would be the same. In B.step() you would still receive the state
information from A and compute the schedules. However, you wouldn’t store them somewhere so that B.get_data() can
return them. Instead, you would just pass them actively to set_data(). Mosaik stores that data in a special input_buffer
of A which will be added to the input of A’s next step.

So to wrap this up, there are two possibilities to achieve cyclic data-flows:

1. Passive controller:

connect(A, B, 'state')
connect(B, A, 'schedules', time_shifted=True)

B.step() computes schedules and caches them somewhere. Mosaik gets these schedules via B.get_data() and
sends them to A.

If you forget to set the time_shifted=True flag, mosaik will raise an error at composition time.

If you forget the second connect(), nothing will happen with the schedules. You may not notice this for a while.

2. Active controller:

connect(A, B, 'state', async_requests=True)

B.step() computes schedules and immediately passes them to set_data(). Mosaik sends them to A.

If you forget to set the async_requests=True flag, mosaik will raise an error at simulation time.
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12.2 Logo and corporate identity

This page contains download links to the mosaik logos and lists the official mosaik colors.

12.2.1 Normal logo

This is the large version of the logo.

PNG, 1920 × 1052 px, with transparency

SVG for the web

Letters converted to objects so that it nicely renders on all devices.

SVG for Inkscape

This is the Inkscape master file for the logo. In order to edit it in Inkscape, you need to install the Aller font.
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12.2.2 Simple logo

The simple variant of the logo should be used when the display size for the logo is so small, that the icons would not
be recognizable very well, e.g. in the headers of letters or papers.

PNG, 512 × 280 px, with transparency

SVG for the web

Letters converted to objects so that it nicely renders on all devices.

SVG for Inkscape

This is the Inkscape master file for the logo. In order to edit it in Inkscape, you need to install the Aller font.

12.2.3 Icon

This version should be used for (program) Icons.

PNG, 512 × 512 px, with transparency
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SVG

12.2.4 Colors

Value ranges RGB: [0-255] [0-255] [0-255]

Value ranges HSB/HSL: [0-359]° [0-100]% [0-100]%

mosaik logo

These colors are usually only used in the logo.

Mod. Green Orange Red Purple Blue Gray
CMYK 28 0 70 49 0 35 75 15 0 85 85 28 0 60 0 43 70 21 0 12 0 0 0 72
RGB 94 130 39 217 141 54 184 28 28 145 58 145 59 154 196 72 72 72
LAB 50 -27 43 65 22 56 40 59 42 40 48 -31 60 -14 -30 31 0 0
HSB 84 70 51 32 75 85 0 85 72 300 60 57 198 70 77 0 0 28
HSL 84 54 33 32 68 53 0 74 42 300 43 30 198 54 50 0 0 28
HEX #5E8227 #D98D36 #B81C1C #913A91 #3B9AC4 #484848

mosaik dark

These colors are usually used for figures, diagrams and in presentations.

Mod. Green Orange Red Purple Blue Gray
CMYK 28 0 70 49 0 37 81 34 0 80 80 29 0 60 0 43 70 21 0 50 0 0 0 72
RGB 94 130 39 168 105 32 181 36 36 145 58 145 38 101 128 72 72 72
LAB 50 -27 43 50 19 49 40 56 38 40 48 -31 40 -11 -21 31 0 0
HSB 84 70 51 32 81 66 0 80 71 300 60 57 198 70 50 0 0 28
HSL 84 54 33 32 68 39 0 67 43 300 43 30 198 54 33 0 0 28
HEX #5E8227 #A86920 #B52424 #913A91 #266580 #484848
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The API reference provides detailed descriptions of mosaik’s classes and functions. It should be helpful if you plan to
extend mosaik with custom components.

13.1 mosaik— The ende-user API

This module provides convenient access to all classes and functions required to create scenarios and run simulations.

Currently, this is only mosaik.scenario.World .

13.2 mosaik.exceptions— mosaik specific error types

This module provides mosaik specific exception types.

class mosaik.exceptions.ScenarioError
This exception is raised if something fails during the creation of a scenario.

class mosaik.exceptions.SimulationError(msg, exc=None)
This exception is raised if a simulator cannot be started or if a problem arises during the execution of a simulation.

13.3 mosaik.scenario— Classes related to the scenario creation

This module provides the interface for users to create simulation scenarios for mosaik.

The World holds all necessary data for the simulation and allows the user to start simulators. It provides a
ModelFactory (and a ModelMock) via which the user can instantiate model instances (entities). The method World.
run() finally starts the simulation.

class mosaik.scenario.World(sim_config, mosaik_config=None, time_resolution=1.0, debug=False,
cache=True, max_loop_iterations=100)

The world holds all data required to specify and run the scenario.

It provides a method to start a simulator process (start()) and manages the simulator instances.

You have to provide a sim_config which tells the world which simulators are available and how to start them. See
mosaik.simmanager.start() for more details.

mosaik_config can be a dict or list of key-value pairs to set addional parameters overriding the defaults:
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{
'addr': ('127.0.0.1', 5555),
'start_timeout': 2, # seconds
'stop_timeout': 2, # seconds

}

Here, addr is the network address that mosaik will bind its socket to. start_timeout and stop_timeout specifiy a
timeout (in seconds) for starting/stopping external simulator processes.

If execution_graph is set to True, an execution graph will be created during the simulation. This may be useful
for debugging and testing. Note, that this increases the memory consumption and simulation time.

sim_config
The config dictionary that tells mosaik how to start a simulator.

config
The config dictionary for general mosaik settings.

time_resolution
An optional global time_resolution (in seconds) for the scenario, which tells the simulators what the integer
time step means in seconds.

Its default value is 1., meaning one integer step corresponds to one

second simulated time.

sims
A dictionary of already started simulators instances.

env
The SimPy.io networking Environment.

srv_sock
Mosaik’s server socket.

df_graph
The directed data-flow graph for this scenario.

trigger_graph
The directed graph from all triggering connections for this scenario.

entity_graph
The graph of related entities. Nodes are (sid, eid) tuples. Each note has an attribute entity with an
Entity.

sim_progress
Progress of the current simulation.

start(sim_name, **sim_params)
Start the simulator named sim_name and return a ModelFactory for it.

connect(src, dest, *attr_pairs, async_requests=False, time_shifted=False, initial_data={}, weak=False)
Connect the src entity to dest entity.

Establish a data-flow for each (src_attr, dest_attr) tuple in attr_pairs. If src_attr and dest_attr have
the same name, you you can optionally only pass one of them as a single string.

Raise a ScenarioError if both entities share the same simulator instance, if at least one (src. or dest.)
attribute in attr_pairs does not exist, or if the connection would introduce a cycle in the data-flow (e.g., A
→ B → C → A).
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If the dest simulator may make asynchronous requests to mosaik to query data from src (or set data to it),
async_requests should be set to True so that the src simulator stays in sync with dest.

An alternative to asynchronous requests are time-shifted connections. Their data flow is always resolved
after normal connections so that cycles in the data-flow can be realized without introducing deadlocks. For
such a connection time_shifted should be set to True and initial_data should contain a dict with input data
for the first simulation step of the receiving simulator.

An alternative to using async_requests to realize cyclic data-flow is given by the time_shifted kwarg. If set
to True it marks the connection as cycle-closing (e.g. C → A). It must always be used with initial_data
specifying a dict with the data sent to the destination simulator at the first step (e.g. {‘src_attr’: value}).

set_initial_event(sid, time=0)
Set an initial step for simulator sid at time time (default=0).

get_data(entity_set, *attributes)
Get and return the values of all attributes for each entity of an entity_set.

The return value is a dict mapping the entities of entity_set to dicts containing the values of each attribute
in attributes:

{
Entity(...): {

'attr_1': 'val_1',
'attr_2': 'val_2',
...

},
...

}

run(until, rt_factor=None, rt_strict=False, print_progress=True, lazy_stepping=True)
Start the simulation until the simulation time until is reached.

In order to perform real-time simulations, you can set rt_factor to a number > 0. A rt-factor of 1. means
that 1 second in simulated time takes 1 second in real-time. An rt-factor 0f 0.5 will let the simulation run
twice as fast as real-time. For correct behavior of the rt_factor the time_resolution of the scenario has to
be set adequately, which is 1. [second] by default.

If the simulators are too slow for the rt-factor you chose, mosaik prints by default only a warning. In order
to raise a RuntimeError, you can set rt_strict to True.

You can also set the lazy_stepping flag (default: True). If True a simulator can only run ahead one step
of it’s successors. If False a simulator always steps as long all input is provided. This might decrease the
simulation time but increase the memory consumption.

Before this method returns, it stops all simulators and closes mosaik’s server socket. So this method should
only be called once.

create_simulator_ranking()
Deduce a simulator ranking from a topological sort of the df_graph.

shutdown()
Shut-down all simulators and close the server socket.

class mosaik.scenario.ModelFactory(world, sim)
This is a facade for a simulator sim that allows the user to create new model instances (entities) within that
simulator.

For every model that a simulator publicly exposes, the ModelFactory provides a ModelMock attribute that
actually creates the entities.
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If you access an attribute that is not a model or if the model is not marked as public, an ScenarioError is raised.

class mosaik.scenario.ModelMock(world, name, sim)
Instances of this class are exposed as attributes of ModelFactory and allow the instantiation of simulator models.

You can call an instance of this class to create exactly one entity: sim.ModelName(x=23). Alternatively, you can
use the create()method to create multiple entities with the same set of parameters at once: sim.ModelName.
create(3, x=23).

create(num, **model_params)
Create num entities with the specified model_params and return a list with the entity dicts.

The returned list of entities is the same as returned by mosaik_api.Simulator.create(), but the sim-
ulator is prepended to every entity ID to make them globally unique.

class mosaik.scenario.Entity(sid, eid, sim_name, type, children, sim)
An entity represents an instance of a simulation model within mosaik.

sid
The ID of the simulator this entity belongs to.

eid
The entity’s ID.

sim_name
The entity’s simulator name.

type
The entity’s type (or class).

children
An entity set containing subordinate entities.

sim
The SimProxy containing the entity.

property full_id
Full, globally unique entity id sid.eid.

13.4 mosaik.scheduler— Coordinate and execute simulators

This module is responsible for performing the simulation of a scenario.

mosaik.scheduler.run(world, until, rt_factor=None, rt_strict=False, print_progress=True, lazy_stepping=True)
Run the simulation for a World until the simulation time until has been reached.

Return the final simulation time.

See mosaik.scenario.World.run() for a detailed description of the rt_factor and rt_strict arguments.

mosaik.scheduler.sim_process(world, sim, until, rt_factor, rt_strict, print_progress, lazy_stepping)
SimPy simulation process for a certain simulator sim.

mosaik.scheduler.has_next_step(world, sim)
Return an Event that is triggered when sim has a next step.

world is a mosaik World .

mosaik.scheduler.wait_for_dependencies(world, sim, lazy_stepping)
Return an event (simpy.events.AllOf) that is triggered when all dependencies can provide input data for sim.

Also notify any simulator that is already waiting to perform its next step.
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world is a mosaik World .

mosaik.scheduler.get_input_data(world, sim)
Return a dictionary with the input data for sim.

The dict will look like:

{
'eid': {

'attrname': {'src_eid_0': val_0, ... 'src_eid_n': val_n},
...

},
...

}

For every entity, there is an entry in the dict and each entry is itself a dict with attributes and a list of values. This
is, because we may have inputs from multiple simulators (e.g., different consumers that provide loads for a node
in a power grid) and cannot know how to aggregate that data (sum, max, . . . ?).

world is a mosaik World .

mosaik.scheduler.step(world, sim, inputs, max_advance)
Advance (step) a simulator sim with the given inputs. Return an event that is triggered when the step was per-
formed.

inputs is a dictionary, that maps entity IDs to data dictionaries which map attribute names to lists of values (see
get_input_data()).

max_advance is the simulation time until the simulator can safely advance it’s internal time without causing any
causality errors.

mosaik.scheduler.get_outputs(world, sim)
Get all required output data from a simulator sim. Yield an event that is triggered when all output data is received.

world is a mosaik World .

mosaik.scheduler.get_progress(sims, until)
Return the current progress of the simulation in percent.

13.5 mosaik.simmanager— Management of external processes

The simulation manager is responsible for starting simulation processes and shutting them down. It also manages the
communication between mosaik and the processes.

It is able to start pure Python simulators in-process (by importing and instantiating them), to start external simulation
processes and to connect to already running simulators and manage access to them.

mosaik.simmanager.start(world, sim_name, sim_id, time_resolution, sim_params)
Start the simulator sim_name based on the configuration im world.sim_config, give it the ID sim_id and pass the
time_resolution and the parameters of the dict sim_params to it.

The sim config is a dictionary with one entry for every simulator. The entry itself tells mosaik how to start the
simulator:

{
'ExampleSimA': {

'python': 'example_sim.mosaik:ExampleSim',
},

(continues on next page)
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(continued from previous page)

'ExampleSimB': {
'cmd': 'example_sim %(addr)s',
'cwd': '.',

},
'ExampleSimC': {

'connect': 'host:port',
},

}

ExampleSimA is a pure Python simulator. Mosaik will import the module example_sim.mosaik and instantiate
the class ExampleSim to start the simulator.

ExampleSimB would be started by executing the command example_sim and passing the network address of
mosaik das command line argument. You can optionally specify a current working directory. It defaults to ..

ExampleSimC can not be started by mosaik, so mosaik tries to connect to it.

time_resolution (in seconds) is a global scenario parameter, which tells the simulators what the integer time step
means in seconds. Its default value is 1., meaning one integer step corresponds to one second simulated time.

The function returns a mosaik_api.Simulator instance.

It raises a SimulationError if the simulator could not be started.

Return a SimProxy instance.

mosaik.simmanager.start_inproc(world, sim_name, sim_config, sim_id, time_resolution, sim_params)
Import and instantiate the Python simulator sim_name based on its config entry sim_config.

Return a LocalProcess instance.

Raise a ScenarioError if the simulator cannot be instantiated.

mosaik.simmanager.start_proc(world, sim_name, sim_config, sim_id, time_resolution, sim_params)
Start a new process for simulator sim_name based on its config entry sim_config.

Return a RemoteProcess instance.

Raise a ScenarioError if the simulator cannot be instantiated.

mosaik.simmanager.start_connect(world, sim_name, sim_config, sim_id, time_resolution, sim_params)
Connect to the already running simulator sim_name based on its config entry sim_config.

Return a RemoteProcess instance.

Raise a ScenarioError if the simulator cannot be instantiated.

class mosaik.simmanager.SimProxy(name, sid, meta, world)
Handler for an external simulator.

It stores its simulation state and own the proxy object to the external simulator.

stop()
Stop the simulator behind the proxy.

The default implementation does nothing.

class mosaik.simmanager.LocalProcess(name, sid, meta, inst, world)
Proxy for internal simulators.

stop()
Yield a triggered event but do nothing else.
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class mosaik.simmanager.RemoteProcess(name, sid, meta, proc, rpc_con, world)
Proxy for external simulator processes.

stop()
Send a stop message to the process represented by this proxy and wait for it to terminate.

class mosaik.simmanager.MosaikRemote(world, sim_id)
This class provides an RPC interface for remote processes to query mosaik and other processes (simulators) for
data while they are executing a step() command.

get_progress()
Return the current simulation progress from sim_progress.

get_related_entities(entities=None)
Return information about the related entities of entities.

If entities omitted (or None), return the complete entity graph, e.g.:

{
'nodes': {

'sid_0.eid_0': {'type': 'A'},
'sid_0.eid_1': {'type': 'B'},
'sid_1.eid_0': {'type': 'C'},

},
'edges': [

['sid_0.eid_0', 'sid_1.eid0', {}],
['sid_0.eid_1', 'sid_1.eid0', {}],

],
}

If entities is a single string (e.g., sid_1.eid_0), return a dict containing all entities related to that entity:

{
'sid_0.eid_0': {'type': 'A'},
'sid_0.eid_1': {'type': 'B'},

}

If entities is a list of entity IDs (e.g., ['sid_0.eid_0', 'sid_0.eid_1']), return a dict mapping each
entity to a dict of related entities:

{
'sid_0.eid_0': {

'sid_1.eid_0': {'type': 'B'},
},
'sid_0.eid_1': {

'sid_1.eid_1': {'type': 'B'},
},

}

get_data(attrs)
Return the data for the requested attributes attrs.

attrs is a dict of (fully qualified) entity IDs mapping to lists of attribute names ({'sid/eid': ['attr1',
'attr2']}).

The return value is a dictionary, which maps the input entity IDs to data dictionaries, which in turn map
attribute names to their respective values: ({'sid/eid': {'attr1': val1, 'attr2': val2}}).
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set_data(data)
Set data as input data for all affected simulators.

data is a dictionary mapping source entity IDs to destination entity IDs with dictionaries of attributes and
values ({'src_full_id': {'dest_full_id': {'attr1': 'val1', 'attr2': 'val2'}}}).

set_event(event_time)
Schedules an event/step at simulation time event_time.

13.6 mosaik.util— Utility classes and functions

This module contains some utility functions and classes.

mosaik.util.sync_process(generator, world, *, errback=None, ignore_errors=False)
Synchronously execute a SimPy process defined by the generator object generator.

A world instance is required to run the event loop.

You can optionally provide a errback (error callback) which will be called with no arguments if an error occurs.

If ignore_errors is set to True, no errors will be printed.

mosaik.util.sync_call(sim, funcname, args, kwargs)
Start a SimPy process to make the func() call to a simulator behave like it was synchronous.

Return the result of the func() call.

Raise an SimulationError if an exception occurs.

mosaik.util.connect_many_to_one(world, src_set, dest, *attrs, async_requests=False)
connect() each entity in src_set to dest.

See the connect() for more details.

mosaik.util.connect_randomly(world, src_set, dest_set, *attrs, evenly=True, max_connects=inf )
Randomly connect() the entities from src_set to the entities from dest_set and return a subset of dest_set
containing all entities with a connection.

world is an instance of the World to which the entities belong.

src_set and dest_set are iterables containing Entity instances. src_set may be empty, dest_set must not be
empty. Each entity of src_set will be connected to an entity of dest_set, but not every entity of dest_set will
necessarily have a connection (e.g., if you connect a set of three entities to a set of four entities). A set of all
entities from dest_set, to which at least one entity from src_set was connected, will be returned.

attrs is a list of attribute names of pairs as in connect().

If the flag evenly is set to True, entities connections will be distributed as evenly as possible. That means if you
connect a set of three entities to a set of three entities, there will be three 1:1 connections; if you connect four
entities to three entities, there will be one 2:1 and two 1:1 connections. If evenly is set to False, connections
will be truly random. That means if you connect three entities to three entities, you may either have three 1:1
connections, one 2:1 and two 1:1 connections or just one 3:1 connection.

max_connects lets you set the maximum number of connections that an entity of dest_set may receive. This
argument is only taken into account if evenly is set to False.
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14.1 Acknowledgments

A lot of people were involved in the creation of mosaik and mosaik wouldn’t be what it is today without any of them:

• Martin Tröschel and Astrid Nieße had the original idea for a tool that lets you integrate existing simulators to
perform large-scale Smart Grid simulations. They also accompanied mosaik’s development many years as group
and project leaders and provided the necessary time and resources for mosaik’s development.

• Steffen Schütte wrote his PhD around mosaik. He and Stefan Scherfke are the primary authors of mosaik 1.

• Ontje Lünsdorf not only contributed code to mosaik 1, but also a lot of ideas. He held countless discussions
with Steffen and Stefan whose results often greatly improved mosaik.

• Stefan Scherfke is the primary author of mosaik 2.0 and 2.1.

• Sebastian Rohjans and Sebastian Lehnhoff accompanied mosaik’s development as group and scientific leaders.
They also put lots of effort into making mosaik open-source software.

• Okko Nannen and Florian Schlögl joined the team in May / July 2014.

We’d also like to thank everyone who worked with mosaik and gave us feedback to make it better.

14.2 The history of mosaik

Our work on mosaik started on July 15th, 2010 – at least, the initial commit happened on that day. Since then, we’ve
come a long way . . .

14.2.1 3.0.0 - 2021-06-07

• This is a major upgrade to improve the discrete-event capabilities. Simulators’ steps can now also be triggered
by the output of other simulators.

• [NEW] Native support of discrete-event simulations

• [NEW] A global time resolution can be set for the scenario.

• [NEW] Simulators can request steps asynchronously via set_event() to react to external events.

• [NEW] Ability to specify output data as non-persistent (i.e. transient)
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• [CHANGE] New api 3: - Simulators have now a type (‘time-based’|’event-based’|’hybrid’). - time_resolution is
passed as argument of the init function. - max_advance is passed as argument of the step function.

• [CHANGE] Update of the documentation

14.2.2 2.6.1 - 2021-06-04

• [CHANGE] Updated ReadTheDocs to support versioning

• [CHANGE] Updated setup: mosaik-api>=2.3,<3

• [CHANGE] Updated networkx version to 2.5

2.6.0 - 2020-05-08

• [NEW] The print of the simulation progress is now optional and can be disabled via a flag world.run(END,
print_progress=False).

• [NEW] Additional starters can now be added via external packages (the standard ones are ‘python’, ‘cmd’, and
‘connect’).

2.5.3 - 2020-04-30

• [FIX] Constrain simpy version to <4.0.0 due to simpy.io incompatibility

• [CHANGE] Updated Odysseus tutorial

• [CHANGE] Eliminated shifted_cache which reduces memory consumption

2.5.2 - 2019-11-01

• [NEW] Special characters are now allowed in path names

• [NEW] Compatible to the new versions of networkx

• [CHANGE] python 3.6, 3.7 and 3.8 are currently supported, python 3.4 and 3.5 not anymore.

• [FIX] Various minor internal changes

• [FIX] Various documentation updates and fixes

2.5.1 - 2018-11-29

• [NEW] When calling the world.start() command for a simulator, users can now set a predefined value for the
posix flag (e.g. True) to prevent automatic detection of the operating system. This facilitates the creation of
some co-simulation cases across OS (e.g. Windows and Linux).
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2.5.0 - 2018-09-05

• [NEW] Connection option “time_shifted” added as alternative to async_requests. This will make creating cyclic
data dependencies between simulators more usable since usage of set_data with an API implementation will no
longer be needed.

2.4.0 - 2017-12-06

• [NEW] Compatible to the new versions of networkx, simpy and simpy.io

• [CHANGE] python 3.4, 3.5 and 3.6 are currently supported python 3.3 is no longer supported

• [FIX] Various bug fixes

2.3.0 - 2016-04-26

• [NEW] Allow passing environment vars to sup processes

• [FIX] Fixed a bug in the version validation which raised an error when using a floating point for the version

2.2.0 - 2016-02-15

• [NEW] API version 2.2: Added an optional “setup_done()” method.

• [CHANGE] API version validation: The API version is no longer an integer but a “major.minor” string. The
major part has to math with mosaiks major version. The minor part may be lower or equal to mosaik’s minor
version.

• [FIX] Various minor fixes and stability improvements.

• [FIX] Various docuentation updates and fixes.

2.1 – 2014-10-24

• [NEW] Mosaik can now perform real-time simulations. Before, this functionality needed to be implemented
by simulators. Now it’s just World.run(until=x, rt_factor=y), where rt_factor defines the simulation
speed relative to the wall-clock time (issue #24).

• [NEW] Simulators can now expose extra methods via their API that can be called from a mosaik scenario. This
allows you to, e.g., store static data in a data base. These extra API methods need to be specified in the simulator’s
meta data (issue #26).

• [NEW] util.connect_many_to_one() helper function.

• [NEW] More and better documentation:

– Tutorial for integrating simulators, control strategies and for creating scenarios.

– Sim API description

– Scenario API description

– Sim Manager documentation

– Scheduler documentation

– Discussion of design decisions

– Logo, colors, CI
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• [NEW] Added util.sync_call() which eases calling proxied methods of a simulator synchronously.

• [CHANGE] The rel attribute in the entity description returned by create() is now optional.

• [CHANGE] Moved proxied methods from SimProxy to SimProxy.proxy in order to avoid potential name
clashes with other attributes.

• [CHANGE] Check a simulator’s models and extra API methods for potential name clashes with the built-in API
methods.

• [CHANGE] The argument execution_graph of World was renamed to debug. The execution graph now also
stores the time after a simulation step (in addition to the time before the step).

• [FIX] issue #22: The asynchronous requests get_data() and set_data() now check if the async_requests flag
was set in World.connect().

• [FIX] issue #23: finalize() is now called for in-process Python simulators.

• [FIX] issue #27: Dramatically improved simulation performance (30 times as fast in some cases) if simulators
use different step sizes (e.g. 1 minute and 1 hour) by improving some internal data structures.

2.0 – 2014-09-22

• [NEW] Updated documentation

• [CHANGE] Separated mosaik’s package and API version. The former stays a string with a semantic version
number; the later is now a simple integer (issue #17).

• [CHANGE] Start/stop timeout for simulators was raised from 2 to 10 seconds.

• [CHANGE] Updated the mosaik logo. It now uses the flat colors and has some improved icon graphics.

• [CHANGE] Renamed mosaik.simulator to mosaik.scheduler.

• [CHANGE] Entity and the World’s entity graph now store their simulator name.

• [FIX] issue #16: Mosaik now always prints the name of the simulator if it closes its socket.

2.0a4 – 2014-07-31

• [NEW] The model meta data may now contain the any_inputs which, if set to True, allows any attribute to be
connected to that model (useful for databases and alike).

• [CHANGE] The dictionary of input values in the API’s step() call now also contains the source of a particular
value. This is also usefull to for databases. This may break existing simulators.

• [CHANGE] “.” is now used as separator in full entiy IDs instead of “/” (issue #19).

2.0a3 – 2014-06-26

• [NEW] Hierarchical entities: Entities can now have a list of child entities (issue #14).

• [NEW] The World class now has a get_data() method that allows you to get data from entities while creating
a scenario.

• [NEW] World.connect(a, b, ('X', 'X')) can now be simplified to World.connect(a, b, 'X').

• [NEW] Attribute Entity.full_id which uniquely identifies an entity: '<sid>/<eid>'

• [NEW] Attribute ModelFactory.meta which is the meta data dictionary of a simulator.

• [NEW] World() now accepts a configuration dictionary which can, e.g., specify the network address for mosaik.
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• [NEW] Overview section for the docs

• [NEW] Description of the mosaik API in the docs

• [CHANGE] When you create entities, mosaik checks if the model parameters actually exists and raises an error
if not (issue #9).

• [CHANGE] The mosaik API’s init() function now receives the simulator ID as first argument (issue #15).

• [CHANGE] The behavior of the get_related_entities() RPC that simulators can perform has been
changed.

• [CHANGE] Various internal improvements

• [FIX] issue #18. Improved the error message if a Python simulator could not be imported.

• [REMOVED] Attribute Entity.rel.

2.0a2 – 2014-05-05

• [NEW] Preliminary documentation and installation instructions (https://mosaik.readthedocs.org)

• [NEW] Simulators can now set data to other simulators using the asynchronous request set_data (issue #1).

• [NEW] There is now a start timeout for external processes (issue #11).

• [CHANGE] Mosaik now raises an error if a simulator uses the wrong API version (issue #4).

• [CHANGE] Mosaik prints everything to stdout instead of using the Python logging module (issue #7).

• [FIX] issue #2. Scheduling now works properly for processes using async. requests. New keyword argument
async_requests for World.connect().

• [FIX] issue #3. Local (in-process) Simulators can now also perform async. requests to mosaik (get_progress,
get_related_entities, get_data, set_data).

• [FIX] issue #8. Cleaned up the code a bit.

• [FIX] issue #10. Tests for the sim manager improved.

2.0a1 – 2014-03-26

• Mosaik 2 is a complete rewrite of mosaik 1 in order to improve its maintainability and flexibility. It is still an
early alpha version and neither feature complete nor bug free.

• Removed features:

– The mosl DSL (including Eclipse xtext and Java) are now gone. Mosaik now only uses Python.

– Mosaik now longer has executables but is now used as a library.

– The platform manager is gone.

– Mosaik no longer includes a database.

– Mosaik no longer includes a web UI.

• Mosaik now consists of four core components with the following feature sets:

– mosaik API

∗ The API has bean cleaned up and simplified.

∗ Simulators and control strategies share the same API.

∗ There are only four calls from mosaik to a simulator: init, create, step and get_data.
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∗ Simulators / processes can make asynchronous requests to mosaik during a step: get_progress,
get_related_entities, get_data.

∗ ZeroMQ with JSON is replaced by plain network sockets with JSON.

– Scenarios:

∗ Pure Python is now used to describe scenarios. This offers you more flexibility to create complex
scenarios.

∗ Scenario creation simplified: Start a simulator to get a model factory. Use the factory to create model
instances (entities). Connect entities. Run simulation.

∗ Connection rules are are no based on a primitive connect function that only connects two entities with
each other. On top of that, any connection strategy can be implemented.

– Simulation Manager:

∗ Simulators written in Python 3 can be executed in process.

∗ Simulators can be started as external processes.

∗ Mosaik can connect to an already running instance of a simulator. This can be used as a replacement
for the now gone platform manager.

– Simulation execution:

∗ The simulation is now event-based. No schedule and no synchronization points need to be computed.

∗ Simulators can have different and varying step sizes.

• Mosaik ecosystem:

– A high-level implementation of the mosaik 2 API currently only exists for Python. See https://gitlab.com/
mosaik/mosaik-api-python.

– mosaik-web is a simple visualization for mosaik simulations. See https://gitlab.com/mosaik/mosaik-web.

– mosaik-pypower is an adapter for the PYPOWER load flow analysis library. See https://gitlab.com/mosaik/
mosaik-pypower and https://github.com/rwl/PYPOWER.

– mosaik-csv and mosaik-householdsim are simple demo simulators that you can use to “simulate” CSV data
sets and load-profile based households. See https://gitlab.com/mosaik/mosaik-csv and https://gitlab.com/
mosaik/mosaik-householdsim.

– There is a repository containing a simple demo scenario for mosaik. See https://gitlab.com/mosaik/
mosaik-demo.

1.1 – 2013-10-25

• [NEW] New API for control strategies.

• [NEW] Mosaik can be configured via environment variables.

• [NEW] Various changes and improvements implemented during Steffen’s dissertation.
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1.0 – 2013-01-25

Mosaik 1 was nearly a complete rewrite of the previous version and already incorporated many of the concepts and
features described in Steffen Schütte’s Phd thesis.

It used mosl, a DSL implemented with Eclipse and xtext, to describe simulators and scenarios. Interprocess commu-
nication was done with ZeroMQ and JSON encoded messages.

0.5 – 2011-08-22

This was the first actual version of mosaik that actually worked. However, the simulators we were using at that time
were hard coded into the simulation loop and we used XML-RPC to communicate with the simulators.
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PRIVACY POLICIES

We welcome you to our website. We would like to inform you about the management of your personal data in accordance
with Art. 13 General Data Protection Regulation (GDPR).

Controller

The controller responsible for the described data collection and processing is OFFIS e.V., Escherweg 2, 26121 Olden-
burg/Germany.

Usage Data

When you visit our website, the data collected from the use of the website is temporarily stored on our web server for
statistical purposes in order to improve the quality of our website. This data set contains:

• the page, from which the data is requested

• the name of the data file,

• the date and time of the query,

• the amount of data transferred,

• the access status (file transmitted, file not found),

• a description of the type of browser used,

• the IP address of the requesting computer shortened to such an extent that no reidentification of any persona data
is possible.

The listed usage data is stored anonymously. The legal basis for the processing of this personal data is provided for in
Art. 6 para. 1 lit. f GDPR.

Data Transfer to Third Parties

We do not transfer your personal data to third parties.

Cookies

We use cookies on our website. Cookies are small pieces of data that are stored and read in your end-device. A
distinction is made between session cookies, which are deleted when you close your browser, and permanent cookies,
which are stored even after your visit has expired. Cookies may contain data that enables the recognition of the device
being used. However, in some cases cookies only contain information on certain settings which are not personal data.

We use session cookies and permanent cookies on our website. The data is processed in accordance to Art. 6 para. 1
lit. f GDPR and in the interest of optimizing or enabling user guidance and improving our website presence.

Please be aware that you can set your browser to inform you when cookies are being stored or used on the website you
are visiting. Thus, any use of cookies is transparent to you. You have the possibility to delete your browser configuration
at any time and prevent any use of new cookies. In the event you refuse the use of cookies, please note that our web
sites may not be displayed optimally and some functions are then no longer technically available.
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Data Security

To avoid unauthorized access to your data, we have implemented technical and organizational measures. We use
encryption technologies on our website. Your data will be transferred to our servers and back again via a connection
that is protected by a TLS encryption technology. You can recognize that you are browsing on an encryption secured
website by the lock-symbol shown in the address bar of your browser and by the address bar starting with https://.

Your Rights as a User

As a website user, the GDPR grants you certain rights when processing your personal data.

1. Right of access (Art. 15 GDPR): You have the right to obtain confirmation as to whether or not personal data
concerning you is being processed, and, where that is the case access to the personal data and the information
specified in Art. 15 GDPR.

2. Right to rectification and erasure (Art. 16 and 17 GDPR): You have the right to obtain without undue delay the
rectification of inaccurate personal data concerning you and, if necessary, the right to have incomplete personal
data completed. You also have the right to obtain an erasure of the personal data concerning you without undue
delay, if one of the reasons listed in Art. 17 GDPR applies, e.g. if the data is no longer necessary for the intended
purpose.

3. Right to restriction of processing (Art. 18 GDPR): If one of the conditions set forth in Art. 18 GDPR applies,
you shall have the right to restrict the processing of your data to mere storage, e.g. if you revoke consent, to the
processing, for the duration of a possible examination.

4. Right to data portability (Art. 20 GDPR): In certain situations, listed in Art. 20 GDPR, you have the right to
receive the personal data concerning you in a structured, common and machine-readable format or demand a
transmission of the data to another third party.

5. Right to object (Art. 21 GDPR): If the data is processed pursuant to Art. 6 para. 1 lit. f GDPR (data processing
for the purposes of the legitimate interests), you have the right to object to the processing at any time for reasons
arising out of your particular situation. We will then no longer process personal data, unless there are demon-
strably compelling legitimate grounds for processing, which override the interests, rights and freedoms of the
person concerned, or the processing serves the purpose of asserting, exercising or defending legal claims.

6. Right to lodge a complaint with a supervisory authority: Pursuant to Art. 77 GDPR, you have the right to lodge
a complaint with a supervisory authority if you consider the processing of the data concerning you infringing
data protection regulations. The right to lodge a complaint may be invoked in particular in the Member State of
your habitual residence, place of work or the place of the alleged infringement.

Contact Details of the Data Protection Officer

Please contact our data protection officer if you have any further questions, suggestions or wishes regarding data pro-
tection:

Dr. Uwe Schläger
datenschutz nord GmbH
Web: www.datenschutz-nord-guppe.de
E-Mail: office@datenschutz-nord.de
Telefon: +49 421 69 66 32 0
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LEGALS

Address

OFFIS e. V.
Escherweg 2
26121 Oldenburg
Germany
Phone +49 441 9722-0
Fax +49 441 9722-102
Email: institut [ A T ] offis.de
Internet: www.offis.de

Board Members

Prof. Dr. Sebastian Lehnhoff (Chairman)
Prof. Dr. techn. Susanne Boll-Westermann
Prof. Dr.-Ing. Axel Hahn
Prof. Dr.-Ing. Andreas Hein
Prof. Dr.-Ing. Wolfgang H. Nebel

Register Court

Amtsgericht Oldenburg
Registernumber VR 1956

VAT Identification Number

DE 811582102

Responsible in the sense of press law

Dr. Christoph Mayer (Director)
OFFIS e.V.
Escherweg 2
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26121 Oldenburg

Disclaimer

Despite careful control OFFIS assumes no liability for the content of external links. The operators of such a website
are solely responsible for its content. At the time of linking the concerned sites were checked for possible violations
of law. Illegal contents were not identifiable at that time. A permanent control of the linked pages is not reasonable
without specific indications of a violation. Upon notification of violations, OFFIS will remove such links immediately.
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DATENSCHUTZ

Datenschutzerklärung

Wir nehmen den Schutz Ihrer persönlichen Daten sehr ernst. Ihre Daten werden im Rahmen der gesetzlichen
Vorschriften geschützt. Personenbezogene Daten werden auf unseren Internetseiten nur im notwendigen Umfang er-
hoben. In keinem Fall werden die erhobenen Daten verkauft oder aus anderen Gründen an Dritte weitergegeben.

Verantwortlicher

Verantwortlich für die hier erläuterte Datenverarbeitung ist der OFFIS e.V., Escherweg 2, 26121 Oldenburg.

Erhebung und Verarbeitung von Daten

Jeder Zugriff auf eine unserer Internetseiten und jeder Abruf einer auf den Internetseiten hinterlegten Datei werden
von gängigen Webserver-Log-Dateien protokolliert. Die Speicherung dient internen systembezogenen und statistischen
Zwecken. Protokolliert wird u.a.:

• welche Datei angefordert wurde,

• der Name der Datei,

• das Datum und die Uhrzeit der Anforderung,

• die übertragene Datenmenge,

• der Zugriffsstatus (Datei nicht gefunden, Datei übertragen etc.),

• der Typ des verwendeten Webbrowsers und

• die IP-Adresse des Internetseitenbesuchers

Sämtliche dieser Daten werden ausschließlich anonymisiert gespeichert und ausgewertet. Zu diesem Zweck wird die
IP-Adresse des Systems, von dem aus die Internetseite oder Datei angefordert wurde, geeignet anonymisiert. Rechts-
grundlage ist Art. 6 Abs. 1 lit. f DSGVO (Datenschutz-Grundverordnung). Es ist somit weder ein Rückschluss auf
eine bestimmte Person möglich, noch erfolgt eine Zusammenführung mit anderen Daten.

Cookies

Darüber hinaus verwenden wir weitere Cookies, um unsere Internetseiten besser auf Ihre Wünsche ausrichten und
um statistische Daten über die Nutzung unserer Internetseiten erheben zu können. Durch diese Cookies werden keine
Daten erhoben, die einen Rückschluss auf eine bestimmte Person ermöglich. Auch die Installation dieser Cookies
wird durch eine entsprechende Browser-Einstellung verhindert. Einmal gesetzte Cookies können Sie jederzeit selbst
löschen, indem Sie den entsprechenden Menüpunkt in Ihrem Internet-Browser aufrufen oder die Cookies auf Ihrer
Festplatte löschen. Einzelheiten hierzu finden Sie im Hilfemenü Ihres Internet-Browsers. Weitergehende personenbe-
zogene Daten werden nur erfasst, wenn Sie diese Angaben freiwillig, z.B. im Rahmen einer Anfrage oder Registrierung,
machen.

Datensicherheit
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Um Ihre Daten vor unerwünschten Zugriffen möglichst umfassend zu schützen, treffen wir technische und organ-
isatorische Maßnahmen. Wir setzen auf unseren Seiten ein Verschlüsselungsverfahren ein. Ihre Angaben werden
von Ihrem Rechner zu unserem Server und umgekehrt über das Internet mittels einer TLS-Verschlüsselung übertragen.
Sie erkennen dies daran, dass in der Statusleiste Ihres Browsers das Schloss-Symbol geschlossen ist und die Adresszeile
mit https:// beginnt. Bitte beachten Sie, dass außerhalb der vorgenannten Rahmenbedingungen, insbesondere bei der
Kommunikation per E-Mail die vollständige Datensicherheit von uns naturgemäß nicht gewährleistet werden kann.

Verwendung der Daten Wir beachten den Grundsatz der zweckgebundenen Datenverwendung und erheben, verar-
beiten und speichern Ihre personenbezogenen Daten nur für die Zwecke, für welche Sie uns diese mitgeteilt haben und
für die technische Administration. Eine Weitergabe Ihrer persönlichen Daten an Dritte erfolgt ohne Ihre ausdrückliche
Einwilligung nicht, sofern dies nicht zur Erbringung der Dienstleistung oder zur Vertragsdurchführung notwendig ist.
Auch die Übermittlung an auskunftsberechtigte staatliche Institution und Behörden erfolgt nur im Rahmen der geset-
zlichen Auskunftspflichten oder wenn wir durch eine gerichtliche Entscheidung zur Auskunft verpflichtet werden.

Löschung der Daten

Eine Löschung der gespeicherten personenbezogenen Daten erfolgt, wenn Sie Ihre Einwilligung zur Speicherung wider-
rufen, wenn deren Kenntnis zur Erfüllung des mit der Speicherung verfolgten Zwecks nicht mehr erforderlich ist oder
wenn deren Speicherung aus sonstigen gesetzlichen Gründen unzulässig ist.

Ihre Rechte als Nutzer

Bei Verarbeitung Ihrer personenbezogenen Daten gewährt die DSGVO Ihnen als Webseitennutzer bestimmte Rechte:

1. Auskunftsrecht (Art. 15 DSGVO): Sie haben das Recht eine Bestätigung darüber zu verlangen, ob sie betreffende
personenbezogene Daten verarbeitet werden; ist dies der Fall, so haben Sie ein Recht auf Auskunft über diese
personenbezogenen Daten und auf die in Art. 15 DSGVO im einzelnen aufgeführten Informationen.

2. Recht auf Berichtigung und Löschung (Art. 16 und 17 DSGVO): Sie haben das Recht, unverzüglich die Berich-
tigung sie betreffender unrichtiger personenbezogener Daten und ggf. die Vervollständigung unvollständiger
perso-nenbezogener Daten zu verlangen. Sie haben zudem das Recht, zu verlangen, dass sie betreffende person-
enbezogene Daten unverzüglich gelöscht werden, sofern einer der in Art. 17 DSGVO im einzelnen aufgeführten
Gründe zutrifft, z. B. wenn die Daten für die verfolgten Zwecke nicht mehr benötigt werden.

3. Recht auf Einschränkung der Verarbeitung (Art. 18 DSGVO): Sie haben das Recht, die Einschränkung der
Verarbeitung zu verlangen, wenn eine der in Art. 18 DSGVO aufgeführten Voraussetzungen gegeben ist, z. B.
wenn Sie Widerspruch gegen die Verarbeitung eingelegt haben, für die Dauer einer etwai-gen Prüfung.

4. Recht auf Datenübertragbarkeit (Art. 20 DSGVO): In bestimmten Fällen, die in Art. 20 DSGVO im Einzelnen
aufgeführt werden, haben Sie das Recht, die sie betreffenden personenbezogenen Daten in einem struktu-rierten,
gängigen und maschinenlesbaren Format zu erhalten bzw. die Übermittlung dieser Daten an einen Dritten zu
verlangen.

5. Widerspruchsrecht (Art. 21 DSGVO): Werden Daten auf Grundlage von Art. 6 Abs. 1 lit. f erhoben (Daten-
verarbeitung zur Wahrung berechtigter Interessen), steht Ihnen das Recht zu, aus Gründen, die sich aus Ihrer
besonderen Situation ergeben, jederzeit gegen die Verarbeitung Wider-spruch einzulegen. Wir verarbeiten die
personenbezogenen Daten dann nicht mehr, es sei denn, es liegen nachweisbar zwingende schutzwürdige Gründe
für die Verarbeitung vor, die die Interessen, Rechte und Freiheiten der betroffenen Person überwiegen, oder die
Verarbeitung dient der Geltendmachung, Ausübung oder Verteidigung von Rechtsansprüchen.

6. Beschwerderecht bei einer Aufsichtsbehörde Sie haben gem. Art. 77 DSGVO das Recht auf Beschwerde bei
einer Aufsichtsbehör-de, wenn Sie der Ansicht sind, dass die Verarbeitung der Sie betreffenden Daten gegen
datenschutzrechtliche Bestimmungen verstößt. Das Beschwerderecht kann insbesondere bei einer Aufsichtsbe-
hörde in dem Mitgliedstaat Ihres Aufenthaltsorts, Ihres Arbeitsplatzes oder des Orts des mutmaßlichen Verstoßes
geltend gemacht werden.

Datenschutzbeauftragter

Dr. Uwe Schläger

126 Chapter 17. Datenschutz

https://


mosaik Documentation, Release 3.0.0

datenschutz nord GmbH
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IMPRESSUM

Anschrift

OFFIS e. V.
Escherweg 2
26121 Oldenburg
Telefon +49 441 9722-0
Fax +49 441 9722-102
E-Mail: institut [ A T ] offis.de
Internet: www.offis.de

Vertretungsberechtigter Vorstand

Prof. Dr. Sebastian Lehnhoff (Vorsitzender)
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GLOSSARY

Control strategy A program that is intended to observe and manipulate the state of objects (simulated or real) of a
power system or those that are somehow connected to the power system; for example a multi-agent system that
controls the feed-in of decentralized producers.

Co-simulation In co-simulation the different subsystems which form a coupled problem are modeled and simulated in
a distributed manner. The modeling is done on the subsystem level without having the coupled problem in mind.
The coupled simulation is carried out by running the subsystems in a black-box manner. During the simulation
the subsystems will exchange data. (source: Wikipedia)

Data-flow The exchange of data between two simulators or between the entities of two simulators.

Example: the (re)active power feed-in of a PV model that is sent to a node of a power system simulator.

Entity Represents an instance of a Model within a mosaik simulation. Entities can be connected to establish a data-flow
between them. Examples are the nodes and lines of a power grid or single electric vehicles.

Entity Set A set or list of entities.

Framework A software framework provides generic functionality that can be selectively changed and expanded by
additional user-written code.

Model A Model is a simplified representation of a real world object or system. It reproduces the relevant aspects of
that object or system for its systematic analysis.

Scenario Description of the system to be simulated. It includes the used models and their relations. It includes the
state of the models and their data base. In the mosaik-context it includes also the simulators.

Simulation The process of executing a scenario (and the simulation models).

Simulation Model The representation of a model in programming code..

Simulator A program that contains the implementation of one or more simulation models and is able to execute these
models (that is, to perform a simulation).

Sometimes, the term simulator also refers all kinds of processes that can talk to mosaik, including actual simu-
lators, control strategies, visualization servers, database adapters and so on.

Smart Grid An electric power system that utilizes information exchange and control technologies, distributed com-
puting and associated sensors and actuators, for purposes such as:

• to integrate the behaviour and actions of the network users and other stakeholders,

• to efficiently deliver sustainable, economic and secure electricity supplies.

(source: IEC)

Step Mosaik executes simulators in discrete time steps. The step size of a time-based simulator can be an arbitrary
integer. It can also vary during the simulation. Event-based simulators are stepped whenever its inputs are
updated (by other simulators). They can also schedule steps for themselves.
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Mosaik uses integers for the representation of time (to avoid rounding errors etc.). It’s unit (i.e. to how many
seconds one integer step corresponds) can be defined in the scenario, and is passed to every simulation component
via the init function as key-word parameter time_resolution. It’s a floating point number and defaults to *1..
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• genindex

• modindex

• search
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PYTHON MODULE INDEX

m
mosaik, 105
mosaik.exceptions, 105
mosaik.scenario, 105
mosaik.scheduler, 108
mosaik.simmanager, 109
mosaik.util, 112
mosaik_api, 65
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C
children (mosaik.scenario.Entity attribute), 108
Co-simulation, 131
config (mosaik.scenario.World attribute), 106
configure() (mosaik_api.Simulator method), 67
connect() (mosaik.scenario.World method), 106
connect_many_to_one() (in module mosaik.util), 112
connect_randomly() (in module mosaik.util), 112
Control strategy, 131
create() (mosaik.scenario.ModelMock method), 108
create() (mosaik_api.Simulator method), 66
create_simulator_ranking() (mo-

saik.scenario.World method), 107

D
Data-flow, 131
df_graph (mosaik.scenario.World attribute), 106

E
eid (mosaik.scenario.Entity attribute), 108
Entity, 131
Entity (class in mosaik.scenario), 108
Entity Set, 131
entity_graph (mosaik.scenario.World attribute), 106
env (mosaik.scenario.World attribute), 106

F
finalize() (mosaik_api.Simulator method), 67
Framework, 131
full_id (mosaik.scenario.Entity property), 108

G
get_data() (mosaik.scenario.World method), 107
get_data() (mosaik.simmanager.MosaikRemote

method), 111
get_data() (mosaik_api.Simulator method), 67
get_input_data() (in module mosaik.scheduler), 109
get_outputs() (in module mosaik.scheduler), 109
get_progress() (in module mosaik.scheduler), 109
get_progress() (mosaik.simmanager.MosaikRemote

method), 111

get_related_entities() (mo-
saik.simmanager.MosaikRemote method),
111

H
has_next_step() (in module mosaik.scheduler), 108

I
init() (mosaik_api.Simulator method), 65

L
LocalProcess (class in mosaik.simmanager), 110

M
meta (mosaik_api.Simulator attribute), 65
Model, 131
ModelFactory (class in mosaik.scenario), 107
ModelMock (class in mosaik.scenario), 108
module

mosaik, 105
mosaik.exceptions, 105
mosaik.scenario, 105
mosaik.scheduler, 108
mosaik.simmanager, 109
mosaik.util, 112
mosaik_api, 65

mosaik
module, 105

mosaik (mosaik_api.Simulator attribute), 65
mosaik.exceptions

module, 105
mosaik.scenario

module, 105
mosaik.scheduler

module, 108
mosaik.simmanager

module, 109
mosaik.util

module, 112
mosaik_api

module, 65
MosaikRemote (class in mosaik.simmanager), 111
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RemoteProcess (class in mosaik.simmanager), 110
run() (in module mosaik.scheduler), 108
run() (mosaik.scenario.World method), 107

S
Scenario, 131
ScenarioError (class in mosaik.exceptions), 105
set_data() (mosaik.simmanager.MosaikRemote

method), 111
set_event() (mosaik.simmanager.MosaikRemote

method), 112
set_initial_event() (mosaik.scenario.World

method), 107
setup_done() (mosaik_api.Simulator method), 66
shutdown() (mosaik.scenario.World method), 107
sid (mosaik.scenario.Entity attribute), 108
sim (mosaik.scenario.Entity attribute), 108
sim_config (mosaik.scenario.World attribute), 106
sim_name (mosaik.scenario.Entity attribute), 108
sim_process() (in module mosaik.scheduler), 108
sim_progress (mosaik.scenario.World attribute), 106
SimProxy (class in mosaik.simmanager), 110
sims (mosaik.scenario.World attribute), 106
Simulation, 131
Simulation Model, 131
SimulationError (class in mosaik.exceptions), 105
Simulator, 131
Simulator (class in mosaik_api), 65
Smart Grid, 131
srv_sock (mosaik.scenario.World attribute), 106
start() (in module mosaik.simmanager), 109
start() (mosaik.scenario.World method), 106
start_connect() (in module mosaik.simmanager), 110
start_inproc() (in module mosaik.simmanager), 110
start_proc() (in module mosaik.simmanager), 110
start_simulation() (in module mosaik_api), 69
Step, 131
step() (in module mosaik.scheduler), 109
step() (mosaik_api.Simulator method), 66
stop() (mosaik.simmanager.LocalProcess method), 110
stop() (mosaik.simmanager.RemoteProcess method),

111
stop() (mosaik.simmanager.SimProxy method), 110
sync_call() (in module mosaik.util), 112
sync_process() (in module mosaik.util), 112

T
time_resolution (mosaik.scenario.World attribute),

106
time_resolution (mosaik_api.Simulator attribute), 65
trigger_graph (mosaik.scenario.World attribute), 106
type (mosaik.scenario.Entity attribute), 108

W
wait_for_dependencies() (in module mo-

saik.scheduler), 108
World (class in mosaik.scenario), 105
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